> People. Passion. Performance.

Product Portfolio 2023

Pumps I Automation

Type Series Index

Amacan K	47	HPK	33	Sewatec	50
Amacan P	47	HPK-L	33	Sewatec SPN	50
Amacan S	48	HVF	53	SEZ	62
Amaclean	44	Hya-Duo D FL	41	SNW	62
AmaControl	68	Hya-Duo D FL Compact	42	SPY	62
AmaDrainer 3	43	Hya-Duo D FL-R	42	SRA	46
AmaDrainer 4/5	43	Hya-Solo D FL	41	SRL	46
AmaDrainer 80/100	43	Hya-Solo D FL Compact	42	Surpress Feu SFE	42
AmaDrainer Box	44	nya solo b i E compact	12	Supressied Sie	12
AmaDrainer Box Mini	44	ILN	31	твс	51
Amaline	49	ILNC	31	TDW	53
Amamix	49	ILNR	31		
Ama-Porter CK Pump Station	45	INVCP	38	UPA 200, UPA 250	55
Ama-Porter F / S	43	Ixo N	39	UPA 300, UPA 350	55
AmaProp	49	Ixo-Pro	40	UPA 400 - UPA 1100	56
Amarex	47			UPA C 100 EE	55
Amarex KRT	47	KSB Guard	27	UPA C 100 EN	55
Amarex N	47	KSB Leakage Sensor	27	UPA C 150	55
AU	54	KSB Safety Boost	42	UPA D	56
AU Monobloc	54	KSB SuPremE	26	UPA S 200, UPA S 250	56
Ad Monobloc	54	KSB UMA-S	26	UPA Control	67
D. D	50			UPA CONTO	07
B Pump	56	KWP	50		50
		KWP-Bloc	50	Vitacast	59
Calio	29			Vitacast Bloc	59
Calio Pro	29	LCC-M	51	Vitachrom	59
Calio Pro Z	29	LCC-R	51	Vitalobe	60
Calio S Pro	28	LCV	52	Vitaprime	59
Calio Z	29	LevelControl Basic 2	67	Vitastage	60
CalioTherm Pro	28	LHD	52	2	
CalioTherm S	28	LSA	51	WBC	51
CalioTherm S Pro	28	LUVA	61	WKL	58
			64		
Cervomatic EDP.2	67	LUVm	64	WKTB	62
CHTC / CHTD	60			WKTR	39
CHTR	37	Magnochem	36		
CHTRa	38	Magnochem 685	36	YNK	61
CINCP / CINCN	38	Magnochem-Bloc	36		
CK 800 Pump Station	45	MDX	52	ZW	53
CK 1000 Pump Station	45	Megabloc	33		
Comeo	57	MegaCPK	35		
Compacta	45	Megaline	31		
Controlmatic E	67	Meganorm	33		
Controlmatic E.2	67	MHD	52		
CPKN	35	MiniCompacta	45		
CPKNO	35	MK / MKY	44		
		Movitec	57		
DeltaBasic	40	Movitec H(S)I	57		
DeltaCompact	40	Movitec VCI	57		
DeltaMacro	40	MultiEco	39		
DeltaPrimo	41	MultiEco Pro	39		
DeltaSolo	41	MultiEco Top	39		
DeltaSolo D	41	Multitec	57		
DWD	53	Multitec-RO	65		
5115	55		05		
Ectigia	20	Omaga	FO		
Estigia	38	Omega	58		
Etabloc	32		62		
Etabloc SYT	34	PNW	62		
Etachrom B	32	PSR	63		
Etachrom L	32	PumpDrive 2 / PumpDrive 2 Eco	26		
Etaline	30	PumpDrive R	26		
EtaLine Pro	30	PumpMeter	27		
Etaline SYT	34				
Etaline Z	30	RC / RCV	65		
Etaline-R	30	RDLO	58		
Etanorm	32	RDLP	58		
Etanorm SYT / RSY	34	RER	63		
Etanorm V	33	RHD	63		
	54				
Etaprime B		RHM	64		
Etaprime L	54	RHR	64		
Etaseco / Etaseco-l	36	Rotex	43		
Etaseco RVP	36	RPH	37		
Evamatic-Box N	44	RPHb / RPHd / RPHbd	37		
EZ-B/L	54	RPH-HW	34		
		RPH-LF	37		
FGD	52	RPH-RO	65		
Filtra N	40	RPH-V	37		
FP Diesel Unit / FP Electro Unit	66	RSR	63		
FP Electro Diesel Set	66	RUV	63		
	50	RVM	64		
HGB / HGC / HGD	60	RVR	64		
HGI	61	RVT	65		
HGM	C 4		20		
	61	RWCP / RWCN	38		
HGM-S	61				
HGM-S HPH		RWCP / RWCN Sewabloc	38 50		

Our goal: Quality down to the smallest detail

At KSB, customer satisfaction, safety and reliability take top priority when it comes to quality assurance. Besides ensuring compliance with international quality standards, all KSB pumps and valves have to fulfil even higher internal quality standards.

Our integrated quality management system includes a detailed evaluation process for our production sites and suppliers worldwide. As a KSB customer, you can therefore rest assured that no matter where or when you order, you will always experience consistently high quality. Thanks to our continuous improvement process, we produce pumps and valves with a long service life, excellent efficiency and low wear – as guaranteed by our internal certification system and the "Made by KSB" quality seal.

How KSB puts quality into daily practice

- Quality is when our customers are satisfied: We focus all of our efforts on our customers. Our global customer satisfaction analysis shows us how well we're doing.
- Quality is what every employee delivers: Everyone at KSB plays a part in creating a positive customer experience. To ensure the best results, all employees undergo continuous professional development.
- Quality is how processes interlock: We continuously check and improve work processes and the working environment.
- Quality is what our supply chain contributes: We set our quality targets in cooperation with our partners. This helps us raise quality across the entire supply chain to the highest level.
- Quality is how mistakes are dealt with: If we detect quality deviations, we determine the causes in order to eliminate them permanently.

As a signatory to the United Nations Global Compact, KSB is committed to the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anti-corruption.

Y

Acting responsibly – producing sustainably

From energy-efficient products to resourceefficient production, we protect the environment with a wide range of measures while also helping our customers to reduce their CO₂ emissions.

We aim to minimise our impact on the environment and to reduce our energy consumption and carbon dioxide emissions to a minimum when manufacturing our pumps and valves. At the same time, KSB's products make a direct contribution towards protecting the environment, for example by saving energy.

Sustainability has two aspects: protecting the environment during the production of our products, and the ecological footprint of our products and services during their life cycle. At KSB, we attach great importance to both.

In order to lessen the environmental impact of our manufacturing, we ensure that our production processes minimise energy and material consumption. We take ecological aspects into account right from the beginning of every new development and comply with international standards to measure and continuously improve our environmental performance. Our sustainability principles are binding for all Group locations and companies. All KSB factories are certified to the ISO 14001 environmental standard.

Our products are increasingly produced using recyclable materials, making it easy for our pumps and valves to be recycled in an environmentally conscious way.

Man Man Man

* * *

When in operation, our energy-efficient products help save large amounts of electricity and thus greenhouse gases. This makes them attractive to our customers from both an environmental and a financial point of view – especially as around 30 percent of the electricity consumed by industry is still related to the use of pumps.

There is also high potential for savings by combining pumps and valves with digital components. For example, variable speed water pumps are particularly energy-efficient and reduce annual CO_2 emissions by 850,000 tonnes in Europe alone.

As a holistic and sustainable company, we tap into our engineering skills to develop products that are particularly energy-efficient and reliable. Minimal downtime and low energy consumption are key factors for ensuring economical operation – strong reasons for choosing KSB pumps and valves. At KSB, combining economic and ecological goals is not just a goal but reality in practice.

MAMAIN

- 10

MI NA MARINA WINT

General Information

Regional products	Not all depicted products are available for sale in every country. Products only available in individual regions are indicated accordingly. Please contact your sales representative for details.
Trademark rights	All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB SE & Co. KGaA and/or a KSB Group company. The absence of the "®" symbol should not be interpreted to mean that the term is not a registered trademark.
Product illustrations	The products illustrated as examples may include options and accessories incurring a surcharge. Subject to modifications due to technical enhancements.
Product information	For information as per chemicals Regulation (EC) No. 1907/2006 (REACH), see https://www.ksb.com/en-global/company/corporate-responsibility/reach.
Digital product catalogue	https://www.ksb.com/en-gb/global-search
CAD portal	http://ksb.partcommunity.com
BIM	https://www.ksb.com/en-gb/software-and-know-how/configuration-tools

6

Pumps

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Drinking water circulators, fixed speed	CalioTherm S	28							
	CalioTherm Pro	28							
Drinking water circulators, variable speed	CalioTherm S Pro	28							
	Calio S Pro	28							
	Calio	29							
Heating circulators, variable speed	Calio Z	29	_					_	
	Calio Pro	29							
	Calio Pro Z	29						-	
	EtaLine Pro	30						-	
	Etaline	30							
	Etaline Z	30		-					
In-line pumps	Etaline-R	30		-				_	
	ILN	31		_					
	ILNC	31		_					
	ILNR	31		_					
	Megaline	31		-					
	Etanorm	32		-					
	Etabloc	32		_					
	Etachrom B	32		-					
Standardised / close-coupled pumps	Etachrom L	32		_					
	Etanorm V	33							
	Meganorm	33							
	Megabloc	33							
	HPK-L	33							
Hot water pumps	НРН	34							
	НРК	33							
	RPH-HW	34							
	Etanorm SYT / RSY	34							
Hot water / thermal oil pumps	Etabloc SYT	34							
	Etaline SYT	34							
	MegaCPK	35							
Standardised chemical pumps	CPKN	35							
	СРКNО	35							
	Magnochem	36							
	Magnochem 685	36							
Seal-less pumps	Magnochem-Bloc	36							
	Etaseco / Etaseco-I	36							
	Etaseco RVP	36							
	RPH	37							
	RPH-LF	37							
	RPHb / RPHd / RPHbd	37							
	RPH-V	37							
	CHTR	37							
Process pumps	CHTRa	38							
· · · · · · · · · · · · · · · · · · ·	CINCP / CINCN	38					-		
	INVCP	38							
	Estigia	38			-				
	RWCP / RWCN	38							
		50			-	-			

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	MultiEco	39							
	MultiEco Pro	39							
Domestic water supply systems with automatic		39							
control unit / swimming pool pumps	Ixo N	39							
	Ixo-Pro	40							
	Filtra N	40		-					
	DeltaMacro	40							
	DeltaCompact	40	_		-			-	
	DeltaBasic	40	-		-				
	DeltaPrimo	41	-		-				
	DeltaSolo	41	-		-				
	DeltaSolo D	41			-				
Dressure hooster sustance		41							
Pressure booster systems	Hya-Solo D FL		-						
	Hya-Duo D FL	41						-	
	Hya-Solo D FL Compact	42							
	Hya-Duo D FL Compact	42							
	Hya-Duo D FL-R	42							
	Surpress Feu SFE	42							
	KSB Safety Boost	42							
	AmaDrainer 3	43		_					
	AmaDrainer 4/5	43		-					
Drainage pumps / grey water pumps	AmaDrainer 80/100	43		_					
	Ama-Porter F / S	43							
	Rotex	43							
	MK / MKY	44							
	Amaclean	44							
	AmaDrainer Box Mini	44							
	AmaDrainer Box	44							
	Evamatic-Box N	44							
	MiniCompacta	45							
Lifting units / package pump stations	Compacta	45							
	CK 800 Pump Station	45							
	CK 1000 Pump Station	45							
	Ama-Porter CK Pump Station	45							
	SRL	46							
	SRA	46							
	Amarex	47							
Submersible motor pumps	Amarex N	47							
	Amarex KRT	47							
	Amacan K	47							
Submersible pumps in discharge tubes	Amacan P	47							
	Amacan S	48							
	Amamix	49							
Mixers / agitators / tank cleaning units	AmaProp	49							
	Amaline	49			-				
	Sewatec	50			-				
	Sewatec SPN	50		-					
Pumps for solids-laden fluids	Sewabloc	50			-				
i amps for sonus lauen nulus	KWP	50							

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	WBC	51							
	LSA	51							
	LCC-M	51							
	LCC-R	51							
	ТВС	51							
	LCV	52							
Slurry pumps	FGD	52							
siurry pumps	MHD	52							
	LHD	52							
	MDX	52							
	ZW	53							
	HVF	53							
	DWD	53							
	TDW	53							
	Etaprime L	54							
	Etaprime B	54							
Self-priming pumps	EZ-B/L	54							
	AU	54							
	AU Monobloc	54							
	UPA C 100 EE	55							
	UPA C 100 EN	55							
	UPA C 150	55							
Submersible borehole pumps	UPA 200, UPA 250	55							
submersible borenole pumps	UPA 300, UPA 350	55							
	UPA 400 - UPA 1100	56							
	UPA D	56							
	UPA S 200, UPA S 250	56							
Vertical turbine pumps	B Pump	56							
	Comeo	57							
	Movitec H(S)I	57							
High-pressure pumps	Movitec	57							
nigh-pressure pumps	Movitec VCI	57							
	Multitec	57							
	WKL	58							
	Omega	58							
Axially split pumps	RDLO	58							
	RDLP	58							
	Vitachrom	59							
	Vitacast	59							
Hygienic pumps for the food, beverage and	Vitacast Bloc	59							
pharmaceutical industries	Vitaprime	59							
	Vitastage	60							
	Vitalobe	60							

Design / Application	Type series	Page	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	CHTC / CHTD	60							
	HGB / HGC / HGD	60							
	HGI	61							
	HGM	61							
	HGM-S	61							
Pumps for power station conventional islands	YNK	61							
Pumps for power station conventional islands	LUVA	61							
	WKTB	62							
	SEZ	62							
	SNW	62							
	PNW	62							
	SPY	62							
	RER	63							
	RSR	63							
	RUV	63							
	PSR	63							
	RHD	63							
Pumps for nuclear power stations	LUVm	64							
	RHM	64							
	RVM	64							
	RHR	64							
	RVR	64							
	RVT	65							
Pumps for desalination by reverse osmosis	RPH-RO	65							
	Multitec-RO	65							
Positive displacement pumps	RC / RCV	65							
Fire-fighting systems	FP Electro Diesel Set	66							
	FP Diesel Unit / FP Electro Unit	66							

Design / Application	Type series	Page	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	KSB SuPremE	26					
	KSB UMA-S	26					
	Controlmatic E	67					
	Controlmatic E.2	67					
Control units	Cervomatic EDP.2	67					
	LevelControl Basic 2	67					
	UPA Control	67					
Variable speed systems	PumpDrive 2 / PumpDrive 2 Eco	26					
Variable speed systems	PumpDrive R	26					
	PumpMeter	27					
Manitaving and diagnasis	KSB Guard	27					
Monitoring and diagnosis	KSB Leakage Sensor	27					
	AmaControl	68					

	0		CalioTherm Pro	CalioTherm S Pro		Calio S Pro	Calio	Calio Z	Calio Pro	Calio Pro Z	EtaLine Pro	Etaline	Etaline Z	Etaline-R	ILN	ILNC	ILNR		Etanorm	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc							
Waste water with faeces	ed	_ 70			ed						<u>a</u>							sat	_							\square	\perp		\perp			
Waste water without faeces	spe		م م	_	spe														_		_					\rightarrow	_		_			-
Aggressive liquids	xed	-4		_	able			\rightarrow	-		In-line pumps	_				+	+	ed	-		_		-			\rightarrow	\rightarrow		+	+		-
Inorganic liquids Activated sludge	s, fi				variable speed			-+	+		- 2	-				+	_	Standardised / close-coupled pumps	-			_	\rightarrow	\rightarrow	-	\rightarrow	+	_	+	+	$\left - \right $	_
Brackish water	ator	_	<u>~</u>	-	rs, v			\rightarrow		-	-	-										-						-	+	+	$\left \right $	_
Service water	cula	- +0			circulators,			+	+											$ \rightarrow $			\rightarrow	-	-	\rightarrow	+		+	+	$\left - \right $	_
Distillate	r cir				rcul			\rightarrow	+	-	F	-	-	-	-	-		- p	-	-	-	-	\rightarrow			\rightarrow	-	-	+	+	$\left - \right $	_
Slurries	ate		5 –		g ci			\rightarrow								+	+	dise	-										+	+		_
Explosive liquids	ן פ	- +	valt		Heating (dar											+		\square	
Digested sludge	kin	-	<u>ה א</u>		He													tan											1	\square		_
Solids (ore, sand, gravel, ash)	Drinking water circulators, fixed speed	1																^o														
Flammable liquids		Č	5																					ļ			\square				\square	_
River, lake and groundwater		_		_																	_			_		$ \rightarrow$	\downarrow		\perp	\perp	\square	<u> </u>
Liquefied gas		_		_				\rightarrow	\rightarrow							\rightarrow					_		$ \rightarrow$			\rightarrow	\rightarrow		\perp			<u> </u>
Food and beverages		_	_	_				\rightarrow	\rightarrow	_						\rightarrow	_	_			_	_	\rightarrow	_		\rightarrow	\rightarrow	_	+			<u> </u>
Gas-containing liquids		_	-	_				\rightarrow	-	_	-	_				+	+	_	-		_		\rightarrow	_		\rightarrow	\rightarrow		+	+		-
Gas turbine fuels Filtered water		_						\rightarrow	+	_	-	-				+	_	-	-		\rightarrow	_	\rightarrow	\rightarrow	_	\rightarrow	+	_	+	+	$\left - \right $	
Geothermal water		-	-	+				\rightarrow	+	-	-	-				+	+	-	-		-	-	\rightarrow	\neg	-	\rightarrow	+		+	+	$\left - \right $	_
Harmful liquids	-	-	-					+	+	-	-	-				+	+	-	-		\rightarrow		\rightarrow	\rightarrow		\rightarrow	+		+	+	$\left - \right $	_
Toxic liquids	-			-				+	+			-				+	+		-			-	-+	\neg		-+	-		+	+	$\left - \right $	_
High-temperature hot water				-				\rightarrow	+							+							\neg			\rightarrow	+		+	+	\vdash	_
Heating water																		-									1		+	1	\square	
Highly aggressive liquids																													+	H		
Industrial service water								Ť																					1		\square	_
Condensate																																
Corrosive liquids																																
Valuable liquids																																
Fuels																																<u> </u>
Coolants		_																_								$ \rightarrow$	\perp		\perp			<u> </u>
Cooling lubricant		_							-									_	-				$ \rightarrow$			\rightarrow	\rightarrow		\perp			<u> </u>
Cooling water		_	_	-					I														\downarrow			\rightarrow	\rightarrow		+	+	-	<u> </u>
Volatile liquids		_		_		\vdash			_	_		-				_	_	-	Ŀ		-	\rightarrow	\rightarrow	_	_	\rightarrow	+	_	+	+	$\left - \right $	-
Fire-fighting water		_	-			\vdash	\square	\rightarrow	-+	_	-		$\left - \right $	$\left - \right $				-	•		-	-	+			\rightarrow	+		+	+	$\left - \right $	
Solvents Seawater		-	-			-	\vdash	\rightarrow	-+	_	-	-	\vdash	$\left - \right $				-	-		-	\rightarrow	\rightarrow	-	-	+	+	_	+	+	\vdash	_
Oils		-	-	+				+	+		-	-	$\left \right $	$\left - \right $									+	\dashv		+	+		+	+	$\left - \right $	_
Organic liquids		-	-	-			\square	\rightarrow	+	-	-	-	\square		\square	+	+				-	-	+	\dashv	\neg	+	+		+	+	$\left - \right $	_
Pharmaceutical fluids				+			\square	+	+			1	\square		\vdash	+	+				\neg	\neg	+	\neg		+	+	+	+	+	\vdash	
Polymerising liquids				1				\uparrow	+			1				\uparrow	+				\uparrow	\neg	\uparrow	\uparrow		\uparrow	+		+	\square	$ \uparrow $	
Rainwater / stormwater																																_
Cleaning agents																																
Raw sludge																																
Lubricants													\square							\square	[_	_[\perp		\square	_
Grey water				_				$ \rightarrow$			_	-					_		_							\rightarrow	\rightarrow		+	+		<u> </u>
Swimming pool water		_				_	\square	\rightarrow	_	_	-	-	\square						-	\rightarrow			-		-	\rightarrow	+	+	+	+'	$\left - \right $	-
Brine		_	-	_		-			-+	_		-				_			-		-		\rightarrow	_	_	\rightarrow	+		+	+	$\left - \right $	_
Feed water		_	-			\vdash	\square	\rightarrow	-+	_	-		$\left - \right $	$\left - \right $				-	-	$\left - \right $	-	-			-	\rightarrow	+		+	+	$\left - \right $	
Dipping paints Drinking water						-	\vdash	\rightarrow	-+	_	-			$\left - \right $					-				_			+	+	_	+	+	\vdash	_
Drinking water Thermal oil		-				\vdash	\vdash	+	+	_	-	-		$\left - \right $				-	-			-	+	-	-	+	+	_	+	+	$\left - \right $	_
Hot water		-																					+			+	+	+	+	+	$\left - \right $	_
Wash water		-					-	-		-		1			-						-					+	-+	+	+	+	\vdash	_
												1			-	- [1	- 1	- 1	-			1			لــــــــــــــــــــــــــــــــــــــ	

					≻									_				bd												
					Etanorm SYT / RSY								685	Magnochem-Bloc Etaseco / Etaseco-l				RPH-LF RPHb / RPHd / RPHbd				7		-	,					
					SYT	55	-	J				məu	Magnochem 685	Magnochem-Bloc Etaseco / Etaseco-	Ϋ́Ρ			PHd				CINCP / CINCN		estigia RW/CD / RW/CN						
	Ļ		MH		orm	Etabloc SYT		aCP	7	è		Magnochem	- oc	noch eco /	Etaseco RVP		1	Г. В/ В	>	~	Ra	- - -		jia P/ p	- 	¥				
	HPK-L	НЫ	HPK RPH-HW		Etan	Etab		MegaCPK	CPKN	CPKNO		Mag	Mag :	Mag Etas	Etas		RPH	RPH-LF RPHb /	RPH-V	CHTR	CHTRa	CINCP		ESTIGIA RVVCP /		WKIR				
Waste water with faeces	sdi			sd			Ň			_	sdi					sdi							_							
Waste water without faeces	Hot water pumps			sdwnd			samin			_	Seal-less pumps	-				Process pumps	_		_				_			_	_	-	╞	L
Aggressive liquids Inorganic liquids	ter	$\left \right $		<u>i</u>	\vdash					-	ess					ess					H				_		-	-	–	┝
Activated sludge	t wa	+		mal	\vdash		- me		╎┻╎	-	eal-l	-				Proc	-		-						_		-	+	-	-
Brackish water	Hot			Hot water / thermal			Standardised chemical				Š		+		+				1						-			┢	\vdash	
Service water				er / .			disp									11														
Distillate				wat			ldar																1							
Slurries				덕			Star			_		_			_		_								_	_			_	L
Explosive liquids Digested sludge		$\left \right $	_	-	\vdash	_	-	` ■		-												_	+	-				-	┝	-
Solids (ore, sand, gravel, ash)		$\left \right $	_		\vdash	_	-		+	-		\dashv	+	_			+	+	+	-	\vdash	_	╉		+	-	-	+-	┢	-
Flammable liquids											ł				+										_			+	\vdash	-
River, lake and groundwater																														
Liquefied gas																														
Food and beverages				_			_			_					_								_		_	_		_	⊢	L
Gas-containing liquids Gas turbine fuels		$\left \right $		-	\vdash		_			-	-	\rightarrow					_		_				-			_		-		┝
Filtered water		+			\vdash		_	┢		-	-	\rightarrow			+		\rightarrow		-				+	_	+		⊢	+	+	┝
Geothermal water		$\left \right $		-	\vdash	-	-					\rightarrow	+		+		+		+	-			+	+	+			┢	┢	
Harmful liquids																							1		1			\uparrow	\square	
Toxic liquids																							1		1					
High-temperature hot water															_													-	_	L
Heating water Highly aggressive liquids		$\left \right $		-		_	_				-								-		-		+	_	_	_	-	+	–	┝
Industrial service water		$\left \right $		-			-		+			-					-		-							-		-	-	┢
Condensate								F			ŀ	\neg			+		+		-			_	_		_			+	1	\vdash
Corrosive liquids											Ì																			
Valuable liquids																	-						_							
Fuels		\square		_	\square		_								_										_			_	⊢	L
Coolants Cooling lubricant		$\left \right $		-	\vdash		_	-	$\left \right $	_	-						\rightarrow	_	-				_		+	_	-	-	┢	┝
Cooling water					\vdash		_				-								-				_		+		┢	+	-	-
Volatile liquids		H		-			-					-				-							_					+	\vdash	
Fire-fighting water																									Ţ					
Solvents		\square							+																					
Seawater			_				_					_		_	_		_		_									-	-	<u> </u> _
Oils Organic liquids										-		-+					-				E							+	┝	-
Pharmaceutical fluids		\vdash	-		\vdash		-	┞┛		-													1				-	+	⊢	-
Polymerising liquids		+			\vdash										+		+		+				+		+		-	+	-	-
Rainwater / stormwater																							1							
Cleaning agents		\square																			Ц								Ļ	Ľ
Raw sludge		\vdash	_				_	_		_		_	_	_	_		_	_	-			_		_		_		-	\vdash	\vdash
Lubricants Grey water		$\left \right $	-	-	\vdash	_	-			-			• 1				-			-						_	-	-	┝	-
Swimming pool water		+			\vdash		-		+			+			+		+		+	-	$\left \right $		+		┛┼	-	-	+	\vdash	-
Brine		\vdash															\dashv		1						+	-		\vdash	\vdash	1
Feed water																														
Dipping paints		\square									- H	-	_								\square					_	_		\vdash	L
Drinking water	_	$\left \right $	_		╞		-			•	- F	-	_						-				_			_		-	┝	-
Thermal oil Hot water				-				-			- H	_					-		-		F		_			-	-	+	\vdash	\vdash
Wash water					╞		-			-		┛	-				+	+	-							-	-	+	⊢	-
																						- 1 -		- -	•					<u> </u>

	ę	Multieco Multieco Pro	MultiEco Top		0 2	2	DeltaMacro	DeltaCompact	3asic	rimo	olo	DeltaSolo D	Hya-Solo D FL	Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact	Hya-Duo D FL-R	Surpress Feu SFE	KSB Safety Boost															
	Multiezo	Multi	Multi	Ixo N	Ixo Pro Eiltra N	LIILLA	Deltal	Delta(DeltaBasic	DeltaPrimo	DeltaSolo	Delta	Hya-S	Hya-D	Hya-S	Hya-D	Hya-D	Surpre	KSB S															
Waste water with faeces	sdu					ms																												
Waste water without faeces	sdwnd lood	_				/ste																												L
Aggressive liquids		_		_		er s	<u> </u>	-			_											-	-	\vdash	_	_	+	_	-	_	-		┝─	_
Inorganic liquids Activated sludge	d b	_	$\left \right $		_	Pressure booster systems	-				_									<u> </u>	-	\vdash	-	\vdash	-	+	+	+	+	-	-		-	-
Brackish water	min	+				- po	-	\vdash			_	_		_	_		_	_	-	-	-	-	┢	┢	-	+	┼	-	-	-	-	-	-	-
Service water	ki l					sur					\neg						_					+	+	+	+	+	╈	+	+-	+-	+		-	-
Distillate	/ SV	+-		-	-	Pres													-			┢	┢	┢	+	+	╎		+	+				—
Slurries	unit																																	
Explosive liquids	rol																																	
Digested sludge	ont																																L	
Solids (ore, sand, gravel, ash)	Domestic water supply systems with automatic control unit / swimming	_																		_		_	_	\vdash	_	_	_	_	_	_	_		\vdash	⊨
Flammable liquids	amo	_	$\left \right $	\rightarrow	_	_	-	-	\square		_							<u> </u>	<u> </u>	-	-	-	-	\vdash	-	+	+	-	+	+	-	<u> </u>	-	-
River, lake and groundwater Liquefied gas	auto	+	$\left \right $		+	_	-	-	$\left - \right $		_			_			_		<u> </u>		-	-	-	\vdash	-	-	+	+	+	+	-	<u> </u>		-
Food and beverages	ith	+				-															-	\vdash	+	+	+	+	+	+	+-	-	-	-	-	-
Gas-containing liquids	S W	+	$\left \right $	\rightarrow	+	-		-			-	_						-		-	-	┢	┢	┢	+	┼	┼	+	+	+-	-		-	-
Gas turbine fuels	tem	+			+			\vdash			\neg						_					-	┢	+	+	+	╈	+	+-	+-	-		┢	-
Filtered water	sys	+															_					\vdash	┢	\uparrow	+	+	╈	+		+	1			
Geothermal water	ply																							T			┢							
Harmful liquids	Ins .																																	
Toxic liquids	atei																																	
High-temperature hot water	S _																																L	<u> </u>
Heating water	lest	_		_	_	_					-		_				_					-	-	-	_	_	+	_	+	-	-		⊢	<u> </u>
Highly aggressive liquids Industrial service water	Dom	+	$\left \right $	-+	+	-						_		_				_		_		┢	╞	\vdash	-	-	+	+	-	-	-		⊢	├
Condensate		+	$\left \right $		+	-	-					-								-	-	\vdash	┢	+	+	+	+	+	+	+			┢	├──
Corrosive liquids		+	$\left \right $		-	-		\vdash									_	-		-	-	┢	┢	┢	+	+	┼	+	+	-	-			\vdash
Valuable liquids		+															_					┢	┢	┢	+	+	╈	+	+	1				
Fuels																	_					\square	T	t	1		Ť							
Coolants																																		
Cooling lubricant																																		
Cooling water									Ц	\square																							L	
Volatile liquids		_																				_		\vdash	_	_	_	_	_	_	-		L	<u> </u>
Fire-fighting water		_	$\left \right $				-														-	-	-	\vdash	-	+	+	-	+	-	-		-	-
Solvents Seawater		+	$\left - \right $	\dashv	+	-	-	\vdash	\vdash	\square	_			_		\square	_	-	-	-	-	-	-	+	-	+	+	-	+	+-	-	-	-	-
Oils		+	+	\neg	+			-	$\left - \right $		\dashv		\neg	\dashv			_	-	-	-	-	\vdash	\vdash	+	+	+	+	+	+	+	\vdash	-	-	\vdash
Organic liquids		+	+		+			-									_	-				\vdash	\vdash	+	+	+	+	+	+	+	1		1	F
Pharmaceutical fluids		+			+						\neg			\neg			_					\vdash	┢	\uparrow	+	+	+	+	+	+	1			\vdash
Polymerising liquids																								T										
Rainwater / stormwater																																		
Cleaning agents																																		
Raw sludge		_																								_					_		\vdash	L
Lubricants		_			_		-	-														-			_	_	-		_	-	-		┝	⊢
Grey water Swimming pool water		+	$\left \right $	-	+	_	-	-				_					_	<u> </u>	<u> </u>		-	-	-	\vdash	-	-	+	+	-	+	-	<u> </u>	-	-
Swimming pool water Brine		+-	+	\dashv			H							-			_	-	-	-	-	\vdash	\vdash	\vdash	+-	+	+	+	+	+	-	-	⊢	-
Feed water		+	+	\dashv	+	-		\vdash	\vdash	\vdash	\neg			-		\square		-	-	-	-	+	+	+	+	+	+	+	+	+	-	-	-	\vdash
Dipping paints		+		\neg	+												_	-				-	+	+	+	+	+	+	+	+	1		-	F
Drinking water																														1				
Thermal oil																																		
Hot water																																	L	
Wash water																																		

	AmaDrainer 3	AmaDrainer 4/5	AmaDrainer 80/100	Ama-Porter F / S	Rotex	MK / MKY	Amarlaan	AmaDrainer Rov Mini		Evamatic-Box N	MiniCompacta	Compacta	CK 800 Pump Station	CK 1000 Pump Station	Ama-Porter CK Pump Station	SRL	SRA		Amarex Amarex N	Amarex KRT		B Pump									
Waste water with faeces	bs					5	2											bs I			ps										
Waste water without faeces	En I					.+												numps			ш										
Aggressive liquids	ar p				1	l t	Sta	Т													e p										
Inorganic liquids	/ate					1	pump stations										•	oto			bin										
Activated sludge	N A					2												Submersible motor			Vertical turbine pumps										
Brackish water	gre						age											sibl			ical										
Service water	bs /				1		ack											ner			/ert										
Distillate	E L					-												Iqn			1										
Slurries	Drainage pumps / grey water pumps						LITUNG UNITS / Package										`	<u> </u>													
Explosive liquids	naç					_	ם_ם																								
Digested sludge	Drai					1.1												1													
Solids (ore, sand, gravel, ash)		_				_	ن									\square											\square			\perp	L
Flammable liquids		_	_	\square					_	_	1		_		_	\square				_				_	_	_	\square		_	+	<u> </u>
River, lake and groundwater					!			_	_	_	-	_	_	_	-	\square		ļ								_	\square		_	+	\vdash
Liquefied gas					_	_	-	_	_	_	_	-	-	<u> </u>			_	-	_	_		_		_	_	_	$\left \right $		_		<u> </u>
Food and beverages	_	_	-		-+	_	-	_	_	_	-	-	-	-	-		_			_				_	_	_	$\left \right $		_	+	-
Gas-containing liquids		_	-			_	-	+	_	_	-	-	-	-	_		_	Ľ					_		_	_			_	+	<u> </u>
Gas turbine fuels		+-	-		+	_	-	+	_	+-	+	-		-	-		_	-	_	+_			_	_	_	_	+		_	+	<u> </u>
Filtered water			-		-+	-	-	_	_	-	-	-	-	-	-		_	-	_					_	_	_	+		_	+	-
Geothermal water Harmful liquids		-	-			-	-	+	_	_	-	-	-	-	-		-	-	_	+			_	_	_	-			_	_	-
		+-	-		+	-		+		+-	-	-	-	-	-		-	-	+	+						-	+		+	+	-
High-temperature hot water		+-	-		+		-	+	_		+	+	-	-	-			-	+	+-			_		+	_	$\left - \right $		+	+	-
Heating water	-	+-	+		+			+		+-	+	+	+	+	+		-	-	+	+					+	-	$\left - \right $		+	+	-
Highly aggressive liquids		+-	-					+	-	+-	+	+	+	-	-			-	+	+-					+	-	$\left - \right $		+	+	-
Industrial service water								╧	+	+-			+	1	+									+	+	-	$\left \right $		+	+	-
Condensate	F		-		_			+	-	+			+		-			-		+-		-		+	+		$\left \right $		+	+	<u> </u>
Corrosive liquids		+	-			-		╧		-	+-	+-	1	1	1				+					-	+		\square		+	+	<u> </u>
Valuable liquids					+			+		1	1	1	1	1					+	1									+	1	<u> </u>
Fuels		1									1	\square								1							\square			+	<u> </u>
Coolants														1													\square			1	
Cooling lubricant											1			1						1											
Cooling water								1			1											Í									
Volatile liquids																											\square				
Fire-fighting water								Ť												T							\square				
Solvents																															
Seawater																		1													
Oils					1																										
Organic liquids																											\square				
Pharmaceutical fluids																\square														\perp	
Polymerising liquids				\square												\square											\square			\perp	\vdash
Rainwater / stormwater		_	_						_	_	-		-													_	\square		_	\vdash	L
Cleaning agents		_	-		_			_	_	_	-	_	_	-	-				_	_				_	_	_	$\left - \right $		_	+	<u> </u>
Raw sludge			-	\vdash	_			+	_	-	-	-	-	-	-	\vdash	_	Ľ						_	_	_	$\left - \right $		+	+	-
Lubricants			╞				╞				-	-	-	-	╞	╞				+				_	_	_	+		+	+	<u> </u>
Grey water Swimming pool water			-								+			1	-								+	_	_	-	+		+	+	-
Swimming pool water Brine			-	\vdash	+	-	┣	+	-	+	-		-	-	-	\vdash	_	-	+			-	_	_		+	+	\vdash	+	+	-
Feed water		-	-	$\left \right $	-+			+	+	+	+	-	-	\vdash	-	\vdash	-	┠	_				_			_	+		+	+	-
Dipping paints		+-	-	$\left - \right $	+	-		+	+	+	+	+	+	\vdash	-	$\left \right $	-		+	+				+	+	+	+	\vdash	+	+	-
Dipping pairies Drinking water		+-	-	\vdash	+		┢	+	+	+	+	+-	-	\vdash	-	\vdash	-	-	+						+	-	+		+	+	-
Thermal oil		+	-		\neg			+	-	+	+	+	-	\vdash	-	\vdash			+	+-		-			+	-	+	\vdash	+	+	<u> </u>
Hot water		+				-	┢	+	-	+	+	-	-	\vdash					+	+				+	+		+		+	+	-
Wash water		1		\vdash	+			+	-	+	1	1	1	1	1	\vdash				1				+		+	\square	\square	+	+	
					1			1				1														1	اــــــــــــــــــــــــــــــــــــــ				

Waste water with faeces		Amacan K	Amacan P	Amacan S	 Amamix 		■ Amaline	Is	Sewatec	Sewatec SPN	Sewabloc	KWP	KWP-Bloc	_	WBC	LSA	LCC-M			FGD	MHD	LHD	MUX	ZW	HVF	טעעט		_	Etaprime L	Etaprime B	EZ-B/L	AU	AU Monobloc
Waste water without faeces	tubes			-inite				Pumps for solids-laden fluids						Slurry pumps					-			+	+	-	+	+	-	Self-priming pumps					
Aggressive liquids	ge t			2	2			en f						y pu									╈	+		+		g pr					
Inorganic liquids	Jarg			rleaning				lade						urn												+		nin				\neg	
Activated sludge	in discharge							ids-I						S					1					+	+	+		prin				1	+
Brackish water	. <u> </u>			Jue				sol																				elf-					
Service water	Sdr							for																				Š					
Distillate	Inc			4	2			sdu																									
Slurries	le			i+i	- AI 10			Pun																	•	• •							
Explosive liquids	ersil																																
Digested sludge	Submersible pumps			Mivare /																													
Solids (ore, sand, gravel, ash)	Sut			Niv																				• I									
Flammable liquids																																	
River, lake and groundwater																																	
Liquefied gas							_																	\perp		\downarrow					\square		\downarrow
Food and beverages		_																						\perp		\perp						$ \rightarrow$	$ \rightarrow$
Gas-containing liquids		_											-											\perp		\perp					\square	$ \rightarrow$	$ \rightarrow$
Gas turbine fuels		_					<u> </u>			<u> </u>									_					\rightarrow	\rightarrow	+	_				$ \rightarrow$	\rightarrow	\rightarrow
Filtered water		_		_	-	_							_			_			_			_	\downarrow	\rightarrow	\rightarrow	+						\rightarrow	\rightarrow
Geothermal water		_			-					<u> </u>			_			_			_				+	\rightarrow	+	+	_			\square	\vdash	\rightarrow	\rightarrow
Harmful liquids	┥┝	_			-	_	-		⊢	<u> </u>		_	_			_			_			_	+	+	+	+	_			\square	\vdash	\rightarrow	\rightarrow
Toxic liquids		_	\rightarrow	_		-	-			-			_			_	_	_	_			\rightarrow	+	+	+	+	_	ŀ		\vdash	\rightarrow	\rightarrow	\rightarrow
High-temperature hot water Heating water		_	\rightarrow	_	-	-			⊢	-			_				_	_	-			_	+	+	+	+	_	ŀ		\vdash	$ \rightarrow$	\rightarrow	+
Highly aggressive liquids	┥┠	_	-	_	-	-	-		⊢	-		_	_					_	-	\vdash		+	+	+	+	+	-	-		$\left \right $	$ \rightarrow$	\rightarrow	+
Industrial service water					-	-	-		-	-								-		\vdash		-	+	-		+	-	-	$ \rightarrow$		$ \rightarrow$	\rightarrow	+
Condensate	┤	-				-	+		⊢			-	-			\rightarrow			+-	$\left \right $		\rightarrow	+	+	+	+	-	-			$ \rightarrow$	+	+
Corrosive liquids		-				-	-		⊢	-									+-			+	+	-	+	+	-				\rightarrow	\rightarrow	+
Valuable liquids		-			-	-	-		-			-	-					-	-	-			+	-	-	+	-					\rightarrow	-
Fuels		_	+			-	-			-								-	+-			-	+	+	+	+	-	ŀ			\rightarrow	+	+
Coolants		-				+	+			-							-	-	+			\rightarrow	+	+	+	+	-				\rightarrow	+	+
Cooling lubricant						-	+			-									+-	\square		\rightarrow	+	+	-	+	-					+	+
Cooling water							1		-	1						\neg		+	+	\square	\square	+	+	+	+	+	-				\neg		╡
Volatile liquids			-+'	÷		-			-	1	\square	_	-			\neg		+	-	\square	\vdash	+	+	+	+	+	-		-		\neg	-+	+
Fire-fighting water			+				1									\uparrow		+	+	\square	\vdash	\neg	+	+	+	+	-				\neg		
Solvents			\neg				1		-							+		+	+			\uparrow	\uparrow	+	+	+	-		\neg		\neg	+	+
Seawater																+		+	1	\square	+	\uparrow	\uparrow	+	+	\uparrow							1
Oils			\uparrow			1	1									1		1		\square			\uparrow	+	\neg	\uparrow						\uparrow	\uparrow
Organic liquids																																	
Pharmaceutical fluids																																	
Polymerising liquids																																	
Rainwater / stormwater																																	
Cleaning agents																																	
Raw sludge																																	
Lubricants																								\perp		\downarrow						$ \downarrow$	\downarrow
Grey water					_												•					\square			\perp	\downarrow			Щ		⊢		┛
Swimming pool water				_			_		<u> </u>		\square								_			_		\perp	_	\downarrow					$ \rightarrow$	\downarrow	\downarrow
Brine				_		_	-		<u> </u>	_	\square								_					\downarrow	\perp	\downarrow					$ \rightarrow$	\downarrow	\downarrow
Feed water				_	-	_												_	_			\rightarrow	\downarrow	\rightarrow	+	\downarrow				\vdash		\downarrow	\rightarrow
Dipping paints		_	_	_	-	_			<u> </u>	_	\vdash		_			_	_	_	_			\rightarrow	\downarrow	\rightarrow	+	+				H	\rightarrow	\rightarrow	\rightarrow
Drinking water		-			-	_			-	_	$\left - \right $					\rightarrow	-+	_		$\left - \right $		\rightarrow	-	\rightarrow	+	+	_			┝┻┤	\rightarrow	\rightarrow	\rightarrow
Thermal oil		_	+	_	-	_	-		⊢		\vdash	_	_			_		_	_	$\left - \right $	\square	+	+	+	+	+	_			\vdash	_	\rightarrow	\rightarrow
Hot water		_	+	_	-				<u> </u>	-	\vdash		-			\rightarrow	-+	_	+-	$\left - \right $		-+	+	+	+	+	_			\vdash		\rightarrow	\rightarrow
Wash water																																	

		UPA C 100 EE	UPA C 100 EN UPA C 150	UPA 200, UPA 250	UPA 300, UPA 350	UPA 400 - UPA 1100		UPA S 200, UPA S 250	Comeo	Movitec H(S)I	Movitec	Multitec vci	WKL		Omega	RDLO	RDLP	Vitachrom	Vitaciat Vitaciat Bloc	Vitacast / Vitacast bloc	Vitastade	Vitalobe		CHTC / CHTD	HGB / HGC / HGD	HGI	HGM		LUVA	WKTB
Waste water with faeces	S							×	3				Τ	S				S		Τ		Τ	s							
Waste water without faeces								samua					1	Axially split pumps		\uparrow	1	and pnarmaceutical industries	1	\uparrow		1	islands			\neg				1
Aggressive liquids	e bi							- Di e	2					t pi			-		1				l isl							
Inorganic liquids	loh							High-pressure						spli									iona							
Activated sludge	ore							Dree	ز ح					ally									enti							
Brackish water	e							-40						Axi									DN(
Service water								Ī										Ē.					ů u							
Distillate																	4	bud_					atio							
Slurries	Sub																						r stä			\square				\perp
Explosive liquids	_			_	\square		_				\square	_	-			_		ge	_	_	_	-	power station conventional	L_		$ \rightarrow$		_	_	+
Digested sludge			_		\square			_	-	$\left - \right $	\vdash	_	-			-		peverage	+	+	_	-		-	\vdash	\rightarrow	_	_	-	+-
Solids (ore, sand, gravel, ash)	-1 8	-	_		-	-+	-		-		\vdash	_	_			-		Dev	_	+	_	-	Pumps for	-	\vdash	-+	-+	_	_	+
Flammable liquids	_					_			-			_			_		_ 3	ğ –	+	+	_	+	d L	-	\vdash	-	_	_	_	+
Liquefied gas	-1 1								-							-	• 00 9	ĕ –	┼	+	_	+	Pu	-	\vdash	\rightarrow	_	_	_	+
Food and beverages			-										-			-	- 4							-	\vdash	+	-			+-
Gas-containing liquids		\rightarrow	-	-								_	+			-	- 07		+					-	\vdash	\rightarrow		+	_	+
Gas turbine fuels	-1 1	+				\rightarrow				-			+			\rightarrow	-		╈	+		+		-		\rightarrow		+	+-	+
Filtered water	- 1	-	-													-			╈	+	-	+		-	-	\rightarrow		+		+
Geothermal water		-	-	-			+											Hygienic pumps for the food,	╈	╈		+				+		+		+
 Harmful liquids	_																	gle	╈	╈		+				\rightarrow			-	1
Toxic liquids	-																-		╞	+		\uparrow				\neg				+
High-temperature hot water																			╈	+		\top								i 🗖
Heating water	•												1						Ť			1								
Highly aggressive liquids	;																													
Industrial service water	·																													
Condensate	_																													
Corrosive liquids																														\perp
Valuable liquids																									\square	$ \rightarrow$				\perp
Fuels				_				_								_			+	_		_			\square	\rightarrow			_	+
Coolants				_				_	_							_	_		_			-		<u> </u>	\square					_
Cooling lubricant		_				_	_	_								_	_		+	+	_	-		-	\vdash	\rightarrow		_	_	+-
Cooling water	_					-											•		+	+	_	-		-	\vdash		\rightarrow	_	_	+
Volatile liquids	-1 1					-+	+		-				-			_	_		+	+	+	+-		-	⊢	-+	+	+		+-
Fire-fighting water Solvents						-+	+		-								_	┣	+	+	+	+-		-	⊢	+	+			+
Seawater	- 1	+							-	$\left - \right $	\vdash								+	+	+	+		-	\vdash	+	+	+		+
Oils			+		-	-			-						-	-	-		╈	+		+		-	\vdash	-		-		+
Organic liquids	_	+		1		\neg	+						_		\vdash	\dashv			+	+	+	+				+		+	+	+
Pharmaceutical fluids		\neg		1	\square	\neg	\neg				\vdash	1	1			\dashv										\neg			-	1
Polymerising liquids						1					$ \uparrow $		1			1			\uparrow	\uparrow		1				\uparrow				1
Rainwater / stormwater	·																													
Cleaning agents																														
Raw sludge																									\square					
Lubricants					\square																				\square					
Grey water					\square						\square		_		\square	_								_	\square	\square				1
Swimming pool water		_		_	\square	\square	\square					_	_			\downarrow			\perp	+	_	-		_	\vdash	$ \rightarrow$		_	_	+
Brine		_	_		-	-+	_		-				_			_			+	+	_	-		-		_+	_+	_		
Feed water			_			-+	+		-		\vdash		<u> </u>				_		_	+	_	-			┍┻┤					<u>'</u>
Dipping paints													-					┢						-	⊢	-+	+	_	_	+
Drinking water Thermal oil						-					┝━┝╹						-							-	⊢┤	-+	-+			+-
	_	+			$\left - \right $	-+	+		-	$\left \right $	\vdash		-			-	_		+	+	_	+	-		⊢	+		+		+
Hot water																														

	SEZ	SNW / PNW	SPY		RER	RSR	RUV	PSR		RHM	RVM	RHR	RVR	RVT		RPH-RO	Multitec-RO	RC / RCV		FP Electro Diesel Set		KSB SuPremE	KSB UMA-S		PumpDrive 2/PumpDrive 2 Eco		PumpMeter	KSB Guard	KSB Leakage Sensor	
Waste water with faeces	ds			ns														S	ns		v	g 🔳		ns			<u>.</u>			
Waste water without faeces	slan			stations											oma			sduund	ster		Drivec			ster		diagnocic				
Aggressive liquids	al i										_				e 0;		-	Ë_	g sy		_			d sy		icito		+		<u> </u>
Inorganic liquids	power station conventional islands	_	-	power	-	\rightarrow			+		-				reverse osmosis	_		aispiacement	Fire-fighting systems		_			Variable speed systems						
Activated sludge Brackish water	Iven		-	lear p	\rightarrow	\rightarrow	\rightarrow	_	+	_	+			_					-fig		-		-	ole s						
Service water	CON			Icle	\rightarrow	+	\rightarrow		+		+					-			Fire		-	-		Iriat		, i				
Distillate	ion		-	for nucl		\rightarrow	+		╈	+	+				atio	+	-		-				-	< <						+
Slurries	stat	+	\vdash	s fo					+		\vdash				alin											2	≥			+
Explosive liquids	ver			Pumps 1							1				Pumps for desalination		1							1						
Digested sludge	bod			٦											for															
Solids (ore, sand, gravel, ash)	Pumps for														nps															
Flammable liquids	nps					\rightarrow			_		_				Pur			_			_					_				<u> </u>
River, lake and groundwater	Pun				-+	_			_		-				-	_	_				_					_				
Liquefied gas Food and beverages	- -	-	-		-	-			+		-				-		_	-	-		_					_				-
Gas-containing liquids		-	-		\rightarrow				+	-	+				-	\rightarrow	-	-	-		-	-	-		-	-				-
Gas turbine fuels		+	-		\rightarrow		\rightarrow		╈		+				-	\rightarrow		-											-	+
Filtered water									+		1				-															+
Geothermal water											1																			<u> </u>
Harmful liquids																														
Toxic liquids																					_					_		\rightarrow		
High-temperature hot water											_				-											_		++		<u> </u>
Heating water	-	_	-		\rightarrow	\rightarrow	\rightarrow	_	_	_	-				-	\rightarrow	_	-	-		_					_				-
Highly aggressive liquids	┤┟╴		-		\rightarrow	\rightarrow	\rightarrow		+	_				_	-	\rightarrow	_	-	-		_				-	_			_	
Condensate					\rightarrow	\rightarrow	\rightarrow	_	+	_	+				-	\rightarrow	_	-	-		-					_	F	+ +	-	
Corrosive liquids	- -	+-	-		\rightarrow	\rightarrow	+		+	+	+				-	+	-		-		-		-			_		\rightarrow		
Valuable liquids		+	1		\rightarrow	\rightarrow			+		+				-	\rightarrow										_		\rightarrow		-
Fuels		-							+		+				-	\neg										_		+		+
Coolants																										_				<u> </u>
Cooling lubricant																														
Cooling water																														
Volatile liquids																										_				
Fire-fighting water		_	-		$ \downarrow$	$ \downarrow$			_		-	\square																+		-
Solvents			-		\neg	\neg	+	_	_	_	-	\square	\square	\square		_		-	-		-	-	-			-	-	\rightarrow	-	
Seawater Oils			-		\dashv	\dashv	+	+	+		+-	\mid	$\left - \right $	\square		-					-	-			_	-		++		+
Organic liquids		+	\vdash		\dashv	+	+	+	+	+	+	$\left - \right $	\vdash	\square	-	+	-			\square	-		-						-	+
Pharmaceutical fluids		+	\vdash		\neg	+	+		+	-	+	\square	\vdash	\square		\dashv	-	-		\vdash			-			-		\rightarrow		+
Polymerising liquids			1		\neg	+	+	+	+		1	\square		\square		+														+
Rainwater / stormwater																												\rightarrow		
Cleaning agents																														
Raw sludge												\square														_				
Lubricants		_	_							_	_	Ц														_				<u> </u>
Grey water			_		\dashv	-	+		_	_	-				-	-	_	-			_		_				-		_	
Swimming pool water			-		\dashv	-	+		+	_	-	\vdash	\vdash	\square					-	\square	_	-	-		-	-		\rightarrow	•	
Brine Feed water			-		\rightarrow	\rightarrow	+		+			\vdash	\square	\square	-	-		-			-		-				-		_	
Dipping paints		-	\vdash		\dashv	+	+		-		-	\vdash	\vdash	\square	-	+	-		-		-					_		$\left \right $		+
Drinking water		+	\vdash		\dashv	+	+	+	+	+	+	\square	\vdash	\square		+	-			\vdash	-					_				-
Thermal oil		1	1		\neg	+	+		+	-	1			\square		+		-					<u> </u>					+		+
Hot water			1			+	1		\uparrow		1					\uparrow												1 1		1
Wash water																														

	CalioTherm S		CalioTherm Pro	CalioTherm S Pro		Callo S Pro	Calio Z	Calio Pro	Calio Pro Z	Etal ina Dua	Etaline Ftaline	Etaline Z	Etaline-R	ILN	ILNC	ILNR .	Megaline	Etanorm	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc							
Aquaculture	sed	ed			ed		_	_		sdr			_					6								$ \rightarrow$	\perp	\perp	\square	\perp	_
Spray irrigation Mining	Drinking water circulators, fixed speed	Drinking water circulators, variable speed	-		variable speed	_	_			sdund	+	+-					_					-	_	-	$\left - \right $	-+	+	+	\vdash	_	_
General irrigation	ixed	able	-		able	_	_	-		In-line	+	_	+				- 3				-		-			-+	+	+	\vdash	-	-
Chemical industry	ors, f	vari			vari			1		≟	+	+	+	-	-					-	-	-					+	+	\vdash	-	-
Dock facilities	Ilato	ors,			ors,													-26-													_
Drainage	circu	ulat			circulators,																						\perp		\square	\perp	_
Pressure boosting	ter o	circ			circ		_			_	_	_					_]	nec	-						-	-	+	_	\vdash	_	_
Sludge thickening Disposal	Ma	ater	-		Heating	_	_			-	+	-	-	$\left \right $			_		-			_			$\left - \right $	-+	+		\vdash	+	_
Disposal	king	ð	-		Hea ⁻		+	-		⊢	+	-	-										-		$\left - \right $	+	+	+-	\vdash	+	-
Descaling units	Drin	kin									╈	1					- 2		-		_						+	+	\square	-	-
District heating		Drin																							\square						_
Solids transport					-	_	_	_			_	_		Ļ					_				_	_	\square	\downarrow	+	\perp	\vdash	+	_
Fire-fighting systems Geothermal energy			\vdash	$\mid \mid$		_	_	+	$\left - \right $	_	_	_	-									_			\square	+	+	+	\vdash	+	_
Drawdown of groundwater levels	-	-	-		-	_		-		-	+	-	-	\square			-		-	_	_	-	-	-	$\left - \right $	\rightarrow	+	+-	\vdash	+	-
Maintenance of groundwater levels											╈		+						-							\neg	+		\vdash	+	-
Domestic water supply																															_
Flood control / coast protection					_																				\square		\perp		\square	\perp	_
Homogenisation			Ŀ		-	_									_	_	_		-	_	_	_				_	+	_	\vdash	_	_
Industrial recirculation systems Nuclear power stations	-	-	-		-																	-	-		$\left - \right $	-+	+	+	\vdash	+	-
Boiler feed applications					-							+-	+						+							\rightarrow	+	+	\vdash	-	-
Boiler recirculation																															_
Waste water treatment plants																									\square						_
Air-conditioning systems	_	-	_		-																	_			-	-	+	_	\vdash	_	_
Condensate transport Cooling circuits		-	-		-									H	H				-	F	-	-			$\left - \right $	\rightarrow	+	+	\vdash	+	-
Paint shops					ŀ			-	-	F			-	-	-				-	-	-		-				+	+	\vdash	-	-
Food and beverage industry																															_
Seawater desalination / reverse osmosis																									\square						_
Mixing		-	_		-		_	-			+	_	-		_	_	_		-	_		_			$\left - \right $	_	+	_	\vdash	_	_
Offshore platforms Pulp and paper industry			-		-	_	_	-		-	+	-		-			-	-	-			_	_		$\left - \right $	_	+	+	\vdash	+	_
Petrochemical industry	-				-		+	-			+	+	+						+							-+	+	+-	H	+	-
Pharmaceutical industry																															-
Pipelines and tank farms																									\Box						_
Refineries		_	_		-	_					_	_	_						_	_					-	_	\perp	_	\vdash	_	_
Flue gas desulphurisation Rainwater harvesting			-		-	_	_			-	+	_		$\left - \right $											$\left - \right $	-+	+	+	\vdash	_	_
Cleaning of stormwater tanks / storage sewers			\vdash	$\left - \right $		+	+	+	$\left - \right $		+	+	+	\vdash	\vdash	[_]		┣	-	\square		-			\vdash	+	+	+	\vdash	+	-
Recirculation								1				+													H						-
Dredging																									\square						_
Shipbuilding			_		-			-			_	_	-												\square	\downarrow	+	_	\vdash	_	_
Sludge disposal Sludge processing	-		⊢	\vdash	-	_	-	-	$\left - \right $		+	+	-	\parallel	\square	\vdash	-	-	-			_	<u> </u>	-	\vdash	+	+	+	⊢┼	+	-
Snow-making systems				\vdash		+	+	+			+	+	+	\square	\square				-	\square		-	-			+	+	+	\vdash	+	-
Heavy oil and coal upgrading																															_
Swimming pools																									Д		\bot		Д	\square	_
Solar thermal energy systems			<u> </u>	\square	-						_	-	-				_		-						$\left - \right $	+	+	+	\vdash	+	_
Fountains Keeping in suspension	-		⊢	$\left - \right $	-	+	+	-	$\left - \right $		+	+	+				-		+	\square		-	-	-	\vdash	+	+	+	\vdash	+	-
Thermal oil circulation						+	+	+			+	+	+	\square		\vdash			\vdash				-			+	+	+-	\vdash	-	-
Draining of pits, shafts, etc.																															_
Process engineering		-												\square		\square			\vdash						Ц	\square	\downarrow	\perp	ļЦ	\downarrow	_
Heat recovery systems Hot-water heating systems												_		-	믬										$\left - \right $	+	+	+	\vdash	+	_
Hot-water neating systems Washing plants			⊢	-	-	━┼╹			-													-			\vdash	+	+	+	\vdash	+	-
Water treatment																															_
Water extraction																									\square						_
Water supply							_	-																	\square	\downarrow	+	+	\vdash	+	_
Sugar industry																															_

Applications		_																													_				
																						7	,												
							۲										u	Ŧ				КРНЬ / КРНА / КРНЬА													
							Etanorm SYT / RSY									685	Magnochem-Bloc	Etaseco / Etaseco-l				/ RP				7			7						
							Ł	F	⊢						E	Magnochem 685	-	Etas	₽			F				CINCP / CINCN			RWCP / RWCN						
					≥		E	Etabloc SYT	Etaline SYT		MegaCPK		~		Magnochem	ç	ç	/ 0	Etaseco RVP			RP D				ļ		_	/R/						
		÷	НДН	\mathbf{x}	RPH-HW		ŋ	old	line		ga(CPKN	CPKNO		gnc	gnc	gnc	sec	sec		RPH RPH-IF	4	RPH-V	CHTR	CHTRa	9	INVCP	Estigia	Ð	WKTR					
		H	HP	НРК	RPI		Eta	Eta	Eta		Ř	9	G		Ba	Ma	Ma	Eta	Eta		RPH.	R D	RP	£	£	€	Ξ	Est	RŠ	Š					
Aquaculture	SO	2				ps				bs				ps						ps															_
Spray irrigation	Hot water pumps					sdwnd				sdwnd				Seal-less pumps						Process pumps															
Mining	erp	;				oilp				alp				ss p						ss p															
General irrigation	vat									mic				al-le						oce												$ \rightarrow$		\perp	
Chemical industry	ot		_	_		erm			_	che				Seã						2											-	\rightarrow	\rightarrow	+	
Dock facilities	-	-	_	-	-	/th	L		_	sed								_		-		-		_		_	_	_				\rightarrow	+	+	
Drainage Pressure boosting		┝	+	-	-	ater	⊢	-	-	ardi					_		_	-		-		+										\rightarrow		+	
Sludge thickening		┢	+-	\vdash	-	Hot water / thermal	⊢	-	-	Standardised chemical	\vdash	-			-		_	-		ŀ		+		-		_		-				+	+	+	—
Disposal		┢	+	\vdash	-	Ĥ	⊢		-	St					_			-		ŀ		╈	+	┼─								\rightarrow	+	+	—
Dewatering			1	1											_	_						┢		1								-	+	+	_
Descaling units																																		\uparrow	_
District heating																																			_
Solids transport																																			_
Fire-fighting systems											\square												_									\perp	\downarrow	\downarrow	
Geothermal energy			-		_		-	_	-										\square			_	-	-			\square		\square			\rightarrow	\downarrow	+	_
Drawdown of groundwater levels Maintenance of groundwater levels		-	+	-	-		⊢	-	-		Н	<u> </u>	$\mid \mid$					-	\square	-		+	-	-	\vdash					<u> </u>		\rightarrow	+	+	
Domestic water supply		┢	+	\vdash	-		⊢	-	-			-						-		-		+		+	-	_	-	-		-		+	+	+	_
Flood control / coast protection (stormwater)		┢	+	┢			-		┢			-			-		_			ŀ		╈	+	+	\vdash	_		-			-	-	+	+	—
Homogenisation			+	\vdash					-						_					F		╈	+	+								-	+	+	—
Industrial recirculation systems																							ī	1										+	_
Nuclear power stations																							I												_
Boiler feed applications			_																													$ \rightarrow$		\perp	
Boiler recirculation					•		_		<u> </u>											-		_		-		_						\rightarrow	\rightarrow	+	
Waste water treatment plants Air-conditioning systems		┝	+	-	-		┝	-										_		-		+	-	-								\rightarrow	_	+	
Condensate transport							⊢	-	-		\vdash	-			_		_		H	-			-	+	\vdash							+	+	+	_
Cooling circuits			_				⊢	-	-											ŀ			+	+		-	H	H		-		-	-	╈	—
Paint shops			1	\square																ŀ		┢	+	1										+	
Food and beverage industry																																			_
Seawater desalination / reverse osmosis																																			
Mixing			_	_	_				_											-		_	_	_								\rightarrow	\rightarrow	+	
Offshore platforms		┝	-	-	-			-	-											-												\rightarrow	\rightarrow	+	
Pulp and paper industry		┝	-	-	-		-	-	-						_	_	_			-	_			-		_	-	-				\rightarrow	_	+	
Petrochemical industry Pharmaceutical industry		⊢	+	-	-		⊢	-	-		H				۲					ŀ						-	-	-		-		+	+	+	_
Pipelines and tank farms		┢	+	\vdash	-		┝	-	-											ŀ												-	-	╈	—
Refineries			1																			_		_		_						-	-	+	_
Flue gas desulphurisation			1														_					1												1	_
Rainwater harvesting																																			_
Cleaning of stormwater tanks / storage sewers							L				Ц		\square																				\square	\square	
Recirculation		-	-	-			<u> </u>	-	<u> </u>		Ц		\square									-	-	-					\square	<u> </u>		\rightarrow	\downarrow	+	
Dredging Shipbuilding		-	+-	-	-		-	-	-		\vdash	<u> </u>	$\left - \right $		\square		_	-	\vdash			+	+-	+-	-	-				<u> </u>		\rightarrow	+	+	
Shipbuilding Sludge disposal		-	+	-	-		-	-	-		\vdash	-	\vdash		-		_	-	\vdash		_	+	+	+	\vdash	\vdash			Η	-		+	+	+	—
Sludge processing		┣	+	-	-		\vdash	-	\vdash		\vdash	-	\vdash		-				\vdash			+	+	+		\square	\square	-		-		+	+	+	—
Snow-making systems			\vdash	\vdash	1			\vdash			\square						_		\vdash			\uparrow	\uparrow	\uparrow	\vdash				Ē			\neg	+	+	—
Heavy oil and coal upgrading			1																																_
Swimming pools																																			
Solar thermal energy systems			-		-		<u> </u>	-	_		Ц	<u> </u>									_	_	-	-					\square	<u> </u>		\downarrow	\downarrow	\downarrow	
Fountains Keeping in surpose		-	+	-	-		-	-	-		\vdash	<u> </u>	$\left - \right $		\square			-	\vdash	-	_	+	+-	+-	-			-	$\left - \right $	<u> </u>		\rightarrow	+	+	_
Keeping in suspension Thermal oil circulation			-		-						\vdash	-	\vdash					-	\vdash				-	+		\vdash	\vdash	-	\mid	-		+	+	+	—
Draining of pits, shafts, etc.			+		-		⊢				\vdash	-	\square		-		-		\vdash	ŀ			+	+			\mid	-		-		+	+	+	_
Process engineering								1	Ē																							+	+	╈	_
Heat recovery systems																																			_
Hot-water heating systems																											Щ					\square	\square	\square	
Washing plants		-	-		-		<u> </u>	-	-		Ļ	_	Ŀ			_	_		\square			_	-	-								\rightarrow	\downarrow	+	
Water treatment Water extraction		-	+-	-	-		-	-	-									-	\vdash	-	_	+	+-	+	-			-		-		\rightarrow	+	+	_
Water extraction Water supply			+	\vdash	-		-	-	-		\vdash	-	\vdash									+	+	+	\vdash	Η	۲	H		-		+	+	+	—
Sugar industry			+	-	-			-	1												+	+	+	+					_			+	+	+	_
			_											لتتعد										_											_

	MultiEco	MultiEco Pro	MultiEco Top	Ixo N	Ixo-Pro	Filtra N	DeltaMarro	DeltaCompact	DeltaBasic	DeltaPrimo	DeltaSolo	DeltaSolo D	Hya-Solo D FL	Hya-Duo D FL	Hya-Solo D FL Compact	Hya-Duo D FL Compact Hva-Duo D FI -R	Surpress Feu SFE	KSB Safety Boost											
Aquaculture	sdund	_	_		_	_	ems				-		\rightarrow	_	_	_	+	-		_			_	_			_	+	
Spray irrigation Mining	mu 📕	-					booster systems							-		+	+	-		+	+			+-				+-+	
General irrigation	lood				-		ster										┢												
Chemical industry	ing						8																						
Dock facilities Drainage	- im	-			_	_	Pressure	_	-	_					_	_	+	_		_				_			_	++	
Pressure boosting	unit / swimming	+			+		Pres							+	_	+	+			+	+			+-				+-+	_
Sludge thickening	nnit																												
Disposal	control																												
Dewatering Descaling units	Con	-			_	_	-	_	-	_					_	_	+			_			_	_				+	
District heating	natic	+	-		+				+		-			+	_		╈			+-	-			+-				+-+	
Solids transport	uton																												
Fire-fighting systems	supply systems with automatic																								\square			\square	
Geothermal energy Drawdown of groundwater levels	iw si	-	-	-	+	_	-		-	_	-		$ \rightarrow$		_	-	+	-		_		\square	_	_	$\left - \right $	\square	_	++	+
Maintenance of groundwater levels	stem	┼─	-		+			+-	+	+	\vdash			+		+	┼			+-	+			+-	-			+	
Domestic water supply	y sys				+									+		+	\uparrow			+				+					-
Flood control / coast protection (stormwater)	Iddin																												
Homogenisation					_	_	-	_	_		_			_		_	_			_			_	_			_	+	
Industrial recirculation systems Nuclear power stations	wat	-			+	-	-	-	+-	-				-+	_	_	+			+								++	_
Boiler feed applications	estic	-			╈				+								╈	-		+				-				+++	
Boiler recirculation	Domestic water																												
Waste water treatment plants		_			_		-	_	_	_						_	-			_								+	
Air-conditioning systems Condensate transport	-	-	-		+	-	-	+-	+		-			+	_	_	+			+-	$\left \right $		_				_	+-+	
Cooling circuits			-		+			-	+	-	┢	-					┢	-		+				-				+	
Paint shops																													
Food and beverage industry		-				_	-		_	_					_	_	-			_								+	
Seawater desalination / reverse osmosis Mixing		-	-		+	-		+-	-		\vdash			+	_	+	+			+	+			+-			_	+	
Offshore platforms		\vdash			+			1	+							+	┢	-		+									
Pulp and paper industry																													
Petrochemical industry	_	-				_	-	_	_	_				_	_	_	-			_				_			_	+	
Pharmaceutical industry Pipelines and tank farms		-			+	-	-	-	-					-+	_		+			+	+							++	
Refineries		+		\vdash	+			+	+	+	1			+	-	+	+	+		+		\dashv	+	+	\square	\vdash	+	++	+
Flue gas desulphurisation																													
Rainwater harvesting																_	_			_								+	
Cleaning of stormwater tanks / storage sewers Recirculation	-	-			+	-	-	-	-	-	-						+			-								+	
Dredging		1			╈			1	1	+				+		+	┢	-		+			-	+					-
Shipbuilding																													
Sludge disposal	_	-			+	_	-	_	_	_				-+		_	+			_			_	_				++	\rightarrow
Sludge processing Snow-making systems	-	-	-		+	_	-	-	-	-	-						+	-		-				-	-			+	
Heavy oil and coal upgrading																													
Swimming pools																													
Solar thermal energy systems		-	-	\vdash	+	_			-	_	-	\vdash	-	_	_	_	-	-	\vdash	_		\square		_	\vdash	\square	_	++	+
Fountains Keeping in suspension		-	-	\vdash	+	-	┣	+	+	+	-	\vdash	+	+	+	+	+	+	\vdash	+		\vdash	+	+	\vdash	\vdash	+	++	+
Thermal oil circulation																													
Draining of pits, shafts, etc.																												\square	
Process engineering		-	<u> </u>	\vdash	+	_		_	-	-					_	_	-	-	\square	_		\square		_	$\mid \mid$	\square	_	++	+
Heat recovery systems Hot-water heating systems	-	-	-	\vdash	+	-		+-	+	+	-		-+	+		+	+	+	$\left \right $	+	$\left - \right $	\square	+	+-	$\left - \right $	\vdash	+	++	
Washing plants																													
Water treatment																T	T										T	\square	
Water extraction Water supply					-	_							-	_	_	_	+			_	$\left - \right $		_	_	\square			+	-
Water supply Sugar industry		-				-		╸┤╺┛	-				\rightarrow	+	-	+	+		\vdash	+		\vdash		+-	$\left - \right $	\vdash	+	++	+
Jugar madsay			L																		1								

															~														
															Ama-Porter CK Pump Station														
															tat														
									=				_	Ę	ò														
			0						AmaDrainer Box Mini				CK 800 Pump Station	CK 1000 Pump Station	Ĕ														
			AmaDrainer 80/100	s				1	~ ,	× _			tati	Sta	Pu														
		AmaDrainer 3 AmaDrainer 4/5	80	Ama-Porter F / S					8 8	Amaurainer box Evamatic-Box N	a		S	<u>e</u>	X														
		AmaDrainer 3 AmaDrainer 4	e,	7					P 2	ŝ	MiniCompacta		đ	Ę	ž				L L										
		9.9	<u> </u>	ť		MK / MKY	1	Amaclean	<u>i</u> <u>i</u>	Ē .	ď	Compacta	Pu	E .	ť			1	Amarex N Amarex KRT										
			Dra	ę	~	Σ	4	ě			ō	ac	0	ğ	ę			Amarex	ê ê		B Pump								
		nal Nal	nal	ца-	Rotex	2		i ja	nal I	am	ij	Ĕ	8	Ę	- u	- <		nai	nai nai		Ľ.								
		Ā	Ā	Ā	22	Ξ		Ā	Ā	Ϋ́́	Ξ	S	ð	ð	¥ 5	SRA		Ā.	Ϋ́Α		8								
Aquacultura																													
Aquaculture	grey water pumps	_	_			_	Suc –	+	_	_					_	_	sdwnd		_	Vertical turbine pumps	_		_			_	$\left - \right $	\rightarrow	
Spray irrigation	5						l ifi										E			E									
Mining	2						sti										7			e b									
General irrigation	ate						dr	Ť									Submersible motor			i.									
Chemical industry	- S		-			-	no –	+						-			Ĕ			- F	-+		_			+			
	- TeV					_	e –	+	_	_					_	_	e			al t	_	_	_				$\left - \right $	\rightarrow	_
Dock facilities		_	_			_	– ž		_	_							rsil			ti			_			_		\rightarrow	
Drainage	g						ac										me			/er									
Pressure boosting	E I						4										q			-									
Sludge thickening	ā						lits										S							i		1			
	ğ					-	5																					\rightarrow	
Disposal							č –			_				-						-				\square	\vdash	_	+	\rightarrow	_
Dewatering	Dra						Ē													-			_					\rightarrow	
Descaling units																													
District heating			1																										
Solids transport		+	1	\square				+	+			\mid	\vdash	-+							+		1	\vdash	\vdash		+	\rightarrow	
		+	-	\square	\vdash	_		+	+		$\left - \right $	\vdash	\vdash	-+		_		\vdash			-	_		$\left \right $	\vdash		+	\rightarrow	+
Fire-fighting systems			_							_						_							_		\vdash	_		\rightarrow	\rightarrow
Geothermal energy																													
Drawdown of groundwater levels								Τ	T																	T			
Maintenance of groundwater levels		1	1					+	+				\dashv	\neg								+	1			1	+	\rightarrow	-
			-			_		+												-	-						+	\rightarrow	+
Domestic water supply			_																										
Flood control / coast protection (stormwater)																													
Homogenisation								Т																					
Industrial recirculation systems																													-
						-		+						-												+	+	\rightarrow	+
Nuclear power stations		_	_			_		+													_	_	_			_		\rightarrow	
Boiler feed applications																													
Boiler recirculation																													
Waste water treatment plants																	1			1									
Air-conditioning systems		-	1				F	+													-					+		\rightarrow	
			-		_	_		+		_	-					_						_	_			-	$\left \right $	\rightarrow	\rightarrow
Condensate transport		_																		-			_					\rightarrow	
Cooling circuits																													
Paint shops																													
Food and beverage industry								+																		1			
Seawater desalination / reverse osmosis		+-	-		-			+						-							\rightarrow		_	-				\rightarrow	
		_	_			_		+	_	_					_	_				-	_	_	_			_	$\left \right $	\rightarrow	
Mixing																													
Offshore platforms																													
Pulp and paper industry								Ť									1												
Petrochemical industry			-			-		+						-					=+=		-		_			+			
			-			_		+	_	_						_			_	-	\rightarrow	_	_			_	$\left \right $	\rightarrow	
Pharmaceutical industry		_	_										\square										_		$ \square $			\rightarrow	\square
Pipelines and tank farms																													
Refineries								T	T																				
Flue gas desulphurisation		1	1					+	+	-			\vdash	-		+					\rightarrow	+	1		\vdash	1	+	\rightarrow	+
		+-	+	\vdash	\vdash	_		+			+	\vdash	\vdash	-+				\vdash			+			\vdash	\vdash		+	\rightarrow	
Rainwater harvesting		_	-		\square			_	_	_		\square	\square	-+					_						\vdash	_	+	\rightarrow	
Cleaning of stormwater tanks / storage sewers																													
Recirculation								Γ						T	T						T				ΙT			T	
Dredging			1					1			İ			\neg							\neg	1						\rightarrow	1
		+	+	\vdash				+	+		$\left - \right $	\vdash	\vdash	\rightarrow				\vdash						\vdash	\vdash		+	\rightarrow	
Shipbuilding		_	-	\square				+	_	_		$\mid \mid$	\square	_		_		\vdash	_				_			_	+	\rightarrow	_
Sludge disposal																							_						
Sludge processing					[ΙĪ	[ſ]			ΙĨ		
Snow-making systems																				-	T								
Heavy oil and coal upgrading		+	+					+	+			\vdash	\vdash	\rightarrow				\vdash	+-		\neg	-	1		\vdash	+	+	\rightarrow	+
		+-	+	$\left \right $				+	+		$\left - \right $		\vdash	-+				\vdash			+			\vdash	\vdash		+	\rightarrow	
Swimming pools		_	-	\square				_	_		$ \vdash $		\square						_		-+		_	\square	\vdash	_	+	\rightarrow	_
Solar thermal energy systems																													
Fountains								Γ					T		T						T				ΙT			T	
Keeping in suspension			1																									\rightarrow	\neg
Thermal oil circulation		+	+	\square	\vdash			+	+			\vdash	\vdash	-+				\vdash			+		+		\vdash	+	+	\rightarrow	+-
			-					+		_	$\left - \right $		\vdash	-+							\rightarrow			$\left - \right $	\vdash		+	\rightarrow	+
Draining of pits, shafts, etc.				Ľ										_		_							_			_		\rightarrow	
Process engineering																													
Heat recovery systems			1					T																					
Hot-water heating systems		+	1		\vdash			+	+	+			\vdash	+		+			1		+		1		\vdash	+	+	\rightarrow	+
			-					+	+		$\left - \right $		\vdash	-							-+				\vdash		+	\rightarrow	
Washing plants		_	-	\square				_	_	_	\square		\square	_		_				-	\rightarrow			\square	\vdash	_		\rightarrow	
Water treatment			_																	-			_		\square				
Water extraction																													
Water supply																													
Sugar industry		+	+					+	+				\vdash	\rightarrow					1		\rightarrow		-		\vdash	-	+	\rightarrow	+-
Sugar Industry											1	.	L										_	1					

22

				Amacan S			AmaProp		Sewatec	Sewatec SPN	Sewabloc	KWP	KWP-Bloc		WBC	LSA LCC-M	LCC-R	TBC	LCV	FGD	MHD	LHD	MDX	ZW	HVF	DWD	TDW		Etaprime L	Etaprime B	EZ-B/L	AU	AU Monobloc
Aquaculture Spray irrigation	Submersible pumps in discharge tubes				units		_		Tor solias-laden Tiulas	_	-			mps			_	-	-	_			_				\square	Self-priming pumps			\vdash		-
Mining	je tl	+	+		ng L	╈	_	- 4		-	+			Slurry pumps														nd (_	F
General irrigation	harç				tank cleaning	╈								luri				\square										ninç					
Chemical industry	disc				۳ ۲									~														-prir					
Dock facilities	s in								2		_			_														Self			\square		L
Drainage	d L	\rightarrow	_	_	agitators /	_		_	2 10	_	_			-	_	_	_	_	-	<u> </u>			_										
Pressure boosting Sludge thickening	nd a	-	_	_	tato			_		_	_			-	_	_	_	\vdash	-	-		_	_				$\left - \right $		\mid	\vdash		_	┝
Disposal	sible	+	-			╉		Ċ	z –	-	+			-	+		+-	+	+	-			_							$\left - \right $	⊢	_	⊢
Dewatering	mer				Mixers /	+				-	+			ŀ	+	-	+-	┢	+	-			-		_				Π				
Descaling units	Sub				Ξ	+				1							i I																
District heating																																	
Solids transport																														Г	Д		Ĺ
Geothermal energy											_			_	_		_		_	_			_			\square	\square			\square	\vdash		L
Fire-fighting systems Drawdown of groundwater levels				_	-	+	_	_		_	_	_		-	_	_	_	-	-	-		_	_						-	H	$\left - \right $	_	
Maintenance of groundwater levels		\rightarrow		-	-	+	_	-		+		-		-	_	_		┢	+			_	_								⊢		
Domestic water supply			+		-	+				+	-	-		-	-	-	+	+	-				-								\vdash		
Flood control / coast protection (stormwater)		+				+				-	1				+		+	┢	-	1			_										F
Homogenisation		Ť			Ī												1	\top															
Industrial recirculation systems																																	
Nuclear power stations											_			_																	\square		L
Boiler feed applications		\rightarrow	_	_	-	+	_	_		_	_			-	_	_	_	-	-	<u> </u>			_				\mid		\square	\square	E		-
Boiler recirculation Waste water treatment plants	-			-										-	+	_		+	-	-		_	_		_		$\left - \right $				⊢		
Air-conditioning systems		-	-		Ē					+		-	-	-	+	-	+	┢	+	-			_										
Condensate transport																	1	┢	1					_									F
Cooling circuits																																	
Paint shops														_									_										L
Food and beverage industry		\rightarrow	_		-	+		_		_	_			-	_	_	_	-	-	<u> </u>			_								\vdash		
Seawater desalination / reverse osmosis Mixing		+	•				_	-		-	+			-	+		+-	+		-			_				$\left - \right $		\vdash	$\left - \right $	⊢┤	_	┝
Offshore platforms		+	-		H	╉	-			-	-			-	+		-	┢	-	-			-							\vdash	\vdash	_	F
Pulp and paper industry			+			╈									╈		+	┢	-	-			_										F
Petrochemical industry																																	
Pharmaceutical industry																																	
Pipelines and tank farms											_			_					_	L											\square		
Refineries		\rightarrow		_	-	+		_		_	_	_	_	-	_	_	_	-	-	_		_	_							-	\vdash	_	L
Flue gas desulphurisation Rainwater harvesting		+		_	-	+	_	-	-	_	_			-	+	_	-	\vdash									$\left - \right $		$\mid \mid$	$\left - \right $	\vdash		┝
Cleaning of stormwater tanks / storage sewers		+	-	-			_	-		-	+			-	+	_	+	┢	-	-			_		_					$\left - \right $	⊢	_	⊢
Recirculation		+			F	+					-			F	+		+	┢	-	-			_										
Dredging																																	
Shipbuilding																																	
Sludge disposal		_								_	_						_						_								\vdash		L
Sludge processing		\rightarrow		_	-	+		_		-				-			<u> </u>						_							\square	\vdash		-
Snow-making systems Heavy oil and coal upgrading		+	+	_	-	+		-	-	+				-	+	+	+	+	-	-	\vdash		_	_		\mid	$\mid \mid$		\vdash	$\mid \mid$	⊢	_	\vdash
Swimming pools		+	+			+	+			+	+			-	+	+	+	\vdash	+		\vdash		-			$\left - \right $	\square						
Solar thermal energy systems		\uparrow	\uparrow			╈	\neg			1	1				+	+	┢	1								\square	\square		Ē	H	\square	-	Ē
Fountains																																	Γ
Keeping in suspension						ſ		_																					\square	Ц	Щ		L
Thermal oil circulation		-	+	_		+	_	_		-	_		\square	-	_	+	-	-	-	-			_			$\left - \right $	$\mid \mid \mid$		\vdash	$\mid \mid$	\vdash		-
Draining of pits, shafts, etc. Process engineering		+	+	_		+	_	-		+				-	+	+	+	\vdash	-	┝	\vdash		_	_		$\mid \mid$	$\mid \mid$		\vdash	$\mid \mid$	\vdash		┝
Heat recovery systems		+	+	-		+	+	-		+	+			-	+	+	+	+	+	-	\vdash		-			\vdash			\vdash	\vdash	\vdash	_	\vdash
Hot-water heating systems		+	+			+	+			+	1		\square		+	+	+	\top	+								\square			$ \uparrow $	\square		F
Washing plants																																	Γ
Water treatment																					\square					\square	\square		\square	Щ			L
Water extraction			• I																											\square			
Water supply		-																				1		i	_					تصا	1		1 -

Applications	_																															
						_		50												Vitacast / Vitacast Bloc												
				50	2 2	10 1		S 2												ist E						Δ						
		ш	z	UPA C 150 UPA 200. UPA 250	UPA 200, UPA 250 UPA 300, UPA 350	UPA 400 - UPA 1100		UPA S 200, UPA S 250			=									taca						HGB / HGC / HGD						
		UPA C 100 EE	UPA C 100 EN	<u>,</u> ≞	5 5	5		0, L			Movitec H(S)I	۲ د							E	, <i< td=""><td>a</td><td>61</td><td></td><td></td><td>CHTC / CHTD</td><td>Ľ,</td><td></td><td></td><td></td><td></td><td></td><td></td></i<>	a	6 1			CHTC / CHTD	Ľ,						
		5	5.5	UPA C 150 UPA 200. U	20°	0 Q	0	S 20		õ	tec	Movitec VCI	Multitec			ga	_		Vitachrom	ast	Vitaprime	Vitastage	Vitalobe		~	H H			'n			
		Ā	M	A A	E Z	Ā	UPA D	PA		Comeo	Movited	ovi vi	ulti	WKL		Omega	KDLO	5	itad	itac	itap	itas	italo		Ĕ	8	Бh	HGM	HGM-S	XNX	LUVA	WKTB
) :	2 2	<u>ر</u> د		<u> </u>	–		Ŭ	2 2	ΣΣ	≥	\$		o i	2 1			>	>	>	>		σ	Ξ	I	± :	= >	7	<u> </u>	3
Aquaculture			\vdash		+-		+_		nps	_	_	_	_		nps	_	+	P.	<u> </u>	-	_			islands	\vdash		\rightarrow	\rightarrow	+	+	+	_
Spray irrigation Mining	h n							H	High-pressure pum						Axially split pumps		+		- 6	-	-	-		isla	\vdash		-+	\rightarrow	+	+	+	_
General irrigation	- e	H			╬	_	_		ure						blit					+	-	-		nal	\vdash	-	_	+	+	-	+	-
Chemical industry	- l-	F					-	-	ress	-					II _V s			tica						ntio			\rightarrow	+	+	+	+	-
Dock facilities	s a		\square	+	+		┢		d-ht				-		Axia					1	-	F		nve				+	+	+	+	
Drainage	sibl								Ξ							Ì		rma						0 U U								
Pressure boosting	J au																							atio								
Sludge thickening	l Sub		\square	\perp											-									r stä			\square	\perp	\perp	\perp	\perp	
Disposa	_		\vdash	_	+	_	_		-		_	_	_		-	_	_			_	_			owe	\square		-+	\rightarrow	+	_	\rightarrow	_
Dewatering	_	\vdash	┝─┼	+	+	-	-	$\left - \right $	-	_	+		-	\vdash			-	era		-	-	-	\square	r po			\rightarrow	+	+	+	+	_
Descaling units District heating		\vdash	┢┼┼	+	+	+	+	$\left - \right $	-	+	+	_		\vdash			┽	hev	-	+	-	-	\vdash	s fo	•	-	\rightarrow	+	+	+	+	_
Solids transport		\vdash	\vdash	+	+	+	+	$\left - \right $	-	+	+			\vdash		-	-		<u>'</u>	\vdash	-	-	\vdash	Pumps for power station conventional	\vdash	\neg	-+	+	+	+	+	-
Fire-fighting systems				╞			+	$\left - \right $		+				\vdash				- to	-	+	-	1	\vdash	ď	\square	\neg	\neg	+	+	+	+	-
Geothermal energy		Ė	\square	+	+	+	\uparrow	\square		\uparrow	+			\square			+	r th		1					\square	\neg	\neg	+	+	+	+	-
Drawdown of groundwater levels																		Hvoienic nums for the food heverage and pharmaceutical industries														
Maintenance of groundwater levels			\vdash															l a														
Domestic water supply								\square										Ē	2						Ц			\square		\square	\square	
Flood control / coast protection (stormwater)	_		\square	_	_										-				_								$ \rightarrow$	\rightarrow	\perp	\perp	\rightarrow	_
Homogenisation		\vdash	\vdash	+	+	_	-			_	_		_	_	-	_	+		- 23	-	_	_			\vdash		\rightarrow	\rightarrow	+	+	+	_
Industrial recirculation systems Nuclear power stations		\vdash	\vdash	+	+	_	-		-						-	-	+	_	-	-	-	-	_				_	\rightarrow	+		+	
Boiler feed applications	_		\vdash	-	+	-	-		-	\rightarrow					-	-	+	-		\vdash	-	-			۲	-					_	
Boiler recirculation				+	+	+	┼─		-	+					ŀ		+			┼─		-					-	-+				-
Waste water treatment plants	_				+						+				F													+	+	-	+	-
Air-conditioning systems	s																															
Condensate transport	t																															
Cooling circuits	_		\square	_	_					_					-		┛				_						\rightarrow	\downarrow	\perp	\perp	\downarrow	_
Paint shops Food and beverage industry		\vdash			+	_	_		-				_		+	_	+	_		-	-	_			\square		-+	\rightarrow	+	+	\rightarrow	_
Seawater desalination / reverse osmosis	_	-	-'						-	_					-			_					-			\rightarrow	\rightarrow	+	+	+	+	_
Mixing			\vdash				-	-	-	+			-		ŀ	-	╉			+	-	-	—		\vdash			+	+	-	+	-
Offshore platforms	_		\vdash	-	+	1	+		-				-		ŀ		+			+		┢						+	+	-	+	-
Pulp and paper industry			\square		+		\top								ŀ					\square								\uparrow	+	+	+	
Petrochemical industry																																
Pharmaceutical industry		L	\square	\perp	\bot			\square						\square											Ц	[\downarrow		\downarrow	\downarrow	
Pipelines and tank farms	_		\vdash	+	+	-	-	\square						\square				_		-	_	_			\square		$ \rightarrow$	\downarrow	\downarrow	+	\downarrow	
Refineries		\vdash	\vdash	+	+	-	-	$\left - \right $	-	-	-	_	-	\vdash		_	+	_	-	-	-	-			\vdash	$ \rightarrow$	\rightarrow	+	+	+	+	_
Flue gas desulphurisation Rainwater harvesting		\vdash	\vdash	+	+	+	-	\vdash	-	-	+	_	-	\vdash		-	+	-	⊢	-	-	-	\square		\vdash	\neg	\rightarrow	+	+	+	+	_
Cleaning of stormwater tanks / storage sewers	_	\vdash	\vdash	+	+	+	+	$\left - \right $		+	+		-	\vdash		+	+	-		\vdash	-	-	\vdash		\vdash	\neg	\rightarrow	+	+	+	+	-
Recirculation			\square	-	+	+	+	\vdash		+	+		-	\vdash		+	+	-		+	1	1	\square		\square	\neg	+	+	+	+	+	-
Dredging																												\uparrow	_	_		
Shipbuilding	<i>,</i>																															
Sludge disposa	_	L	\square	\perp	\perp			\square						\square											Щ	[\square	\downarrow	\downarrow	\downarrow	\downarrow	
Sludge processing			\vdash	+	_	-	-					_	_	\square		_		_		-		_			Ц		$ \rightarrow $	_	_	\downarrow	\downarrow	
Snow-making systems Heavy oil and coal upgrading		\vdash	\vdash						-	_						+	+	_	┡	-	-	-	\square		\vdash		\rightarrow		┛┼	+	+	_
Swimming pools			\vdash	+	+	-			-	+	+	_	-		-	-	+	-		+	-	-			\vdash		\rightarrow	+	+	+	+	-
Solar thermal energy systems			\vdash	-	+	-	-		-	+	+	-			ŀ	+	+	-		-	-	┢	-		\square	_		+	+	+		-
Fountains	_					1	┢				+				ŀ		+			┢								+	+	+	+	-
Keeping in suspension	1																															
Thermal oil circulation																									Д							
Draining of pits, shafts, etc.			\vdash	\perp	\perp									\square											Ц		$ \downarrow$	\downarrow	\downarrow	\downarrow	\downarrow	
Process engineering		\vdash	\vdash	+	+	-	-	\square			_			\square				_		-		-			\square		-+	\downarrow	+	+	\downarrow	_
Heat recovery systems Hot-water heating systems	_	\vdash	┢━╋	+	+	+	+-	$\left - \right $	-	+	+			╞		+	+	-		-	-	-	\square		$\left - \right $	-	\rightarrow	+	+	+	+	_
Hot-water heating systems Washing plants		\vdash	\vdash	+	+	+	+	$\left - \right $						믐		+	+	-	┣	+	\vdash	-	\vdash		\vdash	\neg	\rightarrow	+	+	+	+	-
Washing plants	_						+	$\left - \right $		_											-		\vdash		\square	\neg	\rightarrow	+	+	+	+	-
Water extraction					_						+	1							F			-			Π	\neg	\neg	+	+	+	+	-
Water extraction					<u> </u>									_				_			-		_						-	-	\rightarrow	
Water extraction Water supply	_																															

Applications																																		
																							Unit				Leo	Z ECO						
																							FP Diesel Unit / FP Electro Unit				- di la	PumpDrive 2/PumpDrive 2 Eco						
																						FP Electro Diesel Set	FPE					ndur				KSB Leakage Sensor		
																						Diese	nit /		끹.		iĝ, c	7171	~		_	ae Se		
			SNW / PNW															0	Multitec-RO	2		tr L	sel U		KSB SuPremE	KSB UMA-S	- in	PIIVE	PumpDrive R	PumnMater	KSB Guard	akad		
		SEZ	/ M	¥		RER	RSR	RUV	PSR	RHD	LUVm	RHM	RVM	RHR	RVR	ř		RPH-RO	ultit	RC / RCV		Elec	Die		SB SL	SBC		id ur	dur		585	SB Le		
Aquaculture	_	S	S	S	s	~	2	~	ě.	~		2	2	2	2	<u>د</u>		2	_	_			Ē			_			_		: 2	. ¥	1	_
Spray irrigation	lands				Pumps for nuclear power stations												osmosis			sdwnd	Fira-fiahtina systams			Drives					Monitoring and diagnosis			i		
Mining	lal is				er sta												e osi			sut p		5					ed sys	\downarrow	diad	-				
General irrigation Chemical industry	ntior				MOC	-				-		_				_	reverse	_		displacement	- htic	_	-			-	spee					_	-	\vdash
Dock facilities	conve				lear												ą			Isplac	ro-fi,						able			5				
Drainage Pressure boosting					nuc	_				$ \rightarrow$	\vdash	_				_	desalination	_		ve d	ü	-	-				Vari					_	-	<u> </u>
Sludge thickening	station				s for					\neg		_					alina	-		Positive		┢	-			-							-	\vdash
Disposal	power				dwn																													
Dewatering Descaling units	for po					_				-	$ \rightarrow$	_				_	os foi	_	_	-	-	┝				_		-				_	-	
District heating	ips fo									\neg		_					Pumps for			-		F				-			_					\vdash
Solids transport	Pumps																											╡			\downarrow	F		\Box
Fire-fighting systems Geothermal energy			$\left - \right $			-	$\left - \right $			\neg	$ \rightarrow$					_		_		-	-	-			+			+		┝			-	-
Drawdown of groundwater levels																			-								ī				_	_		-
Maintenance of groundwater levels																																		
Domestic water supply Flood control / coast protection (stormwater)						-			_	-	\square	_				_		_	_	-	-		-			•		-	-			<u> </u>	-	
How control cost protection (control cost protection (control cost) Homogenisation		_	-							\neg		_								-		F				-					+	+		\vdash
Industrial recirculation systems																																		
Nuclear power stations Boiler feed applications						•			-	-		-				-		_	_	-	-	┢	-		+	_	-	+	_	┢		+	-	-
Boiler recirculation																												\pm						
Waste water treatment plants	-									$ \rightarrow$	\vdash							_								_			-				-	<u> </u>
Air-conditioning systems Condensate transport						-				\neg		_				-		-	-	-	-	┢	-			-				-			+	-
Cooling circuits																											ſ	-				_		
Paint shops Food and beverage industry						_			_	\neg	\square	_				_		_	_	-	-	┝	-						-	-			-	-
Seawater desalination / reverse osmosis										\neg		_										┢	-					+	-		Ē	_		-
Mixing																											-				\bot			
Offshore platforms Pulp and paper industry	-					-				-	\square					_		_	_			-				_						_	-	-
Petrochemical industry										\neg										-		F	-		-	-		-	-			ı†	+	\vdash
Pharmaceutical industry											\square																					+		\square
Pipelines and tank farms Refineries						-				\neg						_		_	-			⊢	-		\rightarrow	_		+	_	┢			-	\vdash
Flue gas desulphurisation																											I					_		
Rainwater harvesting										$ \rightarrow$	\square							_		-			-						-			1	-	<u> </u>
Cleaning of stormwater tanks / storage sewers Recirculation						-				\neg						-		-			-	┢	-			-						+	+	-
Dredging																															t	t		
Shipbuilding Sludge disposal						_			_	-	\square					_		_	•			┝			_	_		+	_	┢		_	-	<u> </u>
Sludge processing	-									\neg								_		-		┢			+	-		+		┢				-
Snow-making systems																																		
Heavy oil and coal upgrading Swimming pools						-				-						_		_	_			┝	-			_			_			_	-	-
Solar thermal energy systems																					-				-			-	-		1			
Fountains											\square																					ı—		\vdash
Keeping in suspension Thermal oil circulation			\vdash			-	$\left \right $			-	\dashv	_			\square	_		_	_	-	-	-	-			_				┣			-	\vdash
Draining of pits, shafts, etc.																														E				
Process engineering							\square			-	\square										-								-			_		Ē
Heat recovery systems Hot-water heating systems			\vdash			-	$\left - \right $		-	\neg	\dashv	_			\vdash	_		_		-			-			_				F			-	\vdash
Washing plants																																		
Water treatment Water extraction				_		_				-	$ \rightarrow$					_			_	_	-	-						-		F			-	-
Water extraction Water supply																														Ē		_		-
Sugar industry																													_					

Drive, variable speed system and monitoring

KSB SuPremE

https://www.ksb.com/en-qb/lc/SD8C	PumpDrive R only IE5 (super/ultra premium efficiency) to IEC TS 60034-30-2:2016 for operation on a KSB PumpDrive 2, PumpDrive 2 Eco or PumpDrive R variable speed system. Suitable for connection to three-phase 380 - 480 V power supply (via PumpDrive). The motor mounting poin comply with EN 50347 specifications to ensure compatibility with standardised IEC frame motor applications and full interchangeability with IE2 or IE3 standardised asynchronous motors. Envelope dimensions lie within the limits for IE2 / IE3 motors as recommended in DIN V 42673 (07-2011). The motor is controlled without rotor position sensors. The efficiency of the motor also exceeds 95 percent of nominal efficiency when the motor runs at 25 percent of nominal power on a quadratic torque-speed curve. The motor is magnetless which means that s called rare earths are not used in production. Drive production is thus sustainable and environmentally friendly. Applications For use with dry-installed variable speed pumps which can be driven by standardised foot- mounted and/or flange-mounted motors.
-----------------------------------	---

KSB UMA-S

Number of pumps ≤ 1 V [V] 3~400 Other mains voltages on request	Description Permanent-magnet submersible synchronous motor, for operation on a KSB PumpDrive R variable speed system. NEMA connections and identical outside diameters ensure full interchangeability with comparable 6-inch, 8-inch or 10-inch asynchronous motors. The motor is controlled without rotor position sensors. The motor efficiency is 5 - 12 % above that of asynchronous motors. Given the design and functionality the use of permanent magnets is essential. Applications Exclusively for submersible borehole pumps in the range of 4 to 250 kW.
---	--

PumpDrive 2 / PumpDrive 2 Eco

	Number of pumps P [kW] V [V] Frequency inverter	Description Modular self-cooling frequency inverter that enables continuously variable speed control of asynchronous and synchronous reluctance motors by means of analog standard signals, a field bus or the control panel. As PumpDrive is self-cooling, it can be mounted on a motor, on the wall or in a control cabinet. Up to six pumps can be controlled without needing an additional controller. Applications Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport
		https://www.ksb.com/en-gb/lc/P10A

PumpDrive R

	bus or the control panel. As PumpDrive R is self-cooling, it can be mounted on the wall or in a control cabinet. Up to six pumps can be controlled without needing an additional controller. PumpDrive R extends the power range of PumpDrive 2 up to a rated power of 400 kW (standard) / 1400 kW (on request). Applications Air-conditioning systems, heat generation, heat distribution, water supply systems, water extraction, water treatment, water distribution, water transport, refrigeration, cooling distribution, heat generation, heat distribution, fluid transport, cooling lubricant distribution, industrial water supply, tank drainage, waste water transport
	https://www.ksb.com/en-gb/lc/K01A

PumpMeter

Number of pumps ≤ V [V DC] 2	Device for monitoring the operation of one pump. It is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. The device comprises two pressure sensors and a display unit. PumpMeter is supplied completely assembled and parameterised for the pump it is used with. It is ready for operation as soon as the M12 plug connector is plugged in. Applications Air-conditioning systems, cooling circuits, cooling lubricant distribution, heating systems, water treatment plants, water supply systems, water distribution systems, water transport systems, water extraction systems
	https://www.ksb.com/en-gb/lc/P28A

KSB Guard

Sensor units V [V AC]	≤ 40 (per gateway) 110 - 240 (gateway)	
		Applications Monitoring dry-installed pumps as well as submersible pumps and mixers, optimising maintenance and improving system availability
		https://www.ksb.com/en-gb/lc/G01A

KSB Leakage Sensor

Tι ^e	Description The KSB Leakage Sensor is an intelligent monitoring system for measuring and displaying mechanical seal leakage on site. It comprises a leakage measuring instrument and a display unit. Applications Industry (heat transfer fluid market)
KSB Leakage Sensor	https://www.ksb.com/en-gb/lc/L05A

CalioTherm S

Drinking water circulators, variable speed

CalioTherm Pro

CalioTherm S Pro

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Applications Hot water supply, drinking water circulation systems and similar systems in industry and building services (e.g. cooling water recirculation).
	https://www.ksb.com/en-gb/lc/C91C

Heating circulators, variable speed

Calio S Pro

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz ope Also available for	$\leq 3,5$ ≤ 8 ≤ 10 $\geq +2 - \leq +95$ ≤ 3000 eration	Description Maintenance-free high-efficiency screw-ended glandless pump with high-efficiency electric motor and continuously variable differential pressure control. Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
		https://www.ksb.com/en-gb/lc/C90C

Calio

Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
	https://www.ksb.com/en-gb/lc/C89B

Calio Z

n [rpm] ≤ 4500 Data for 50 Hz operation Also available for 60 Hz https://www.ksb.com/ep-qb/lc/C09B		Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	$\begin{array}{l} 32-65\\ \leq 70\\ \leq 18\\ \leq 16\\ \geq -10-\leq +110\\ \leq 4500\\ \end{array}$ Data for 50 Hz operation	Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
---	--	---	--	---

Calio Pro

Rp DN Q [m³/h] H [m] p [bar] T [°C]	$\begin{array}{c} 1 - 1 \ 1/4 \\ 32 \ - \ 65 \\ \leq \ 24 \\ \leq \ 12 \\ \leq \ 16 \\ \geq \ -10 \ - \ \leq \ +110 \\ \end{array}$ Data for 50 Hz operation Also available for 60 Hz	Maintenance-free high-efficiency flanged or screw-ended glandless pump with high-efficiency electric motor and continuously variable differential pressure control. Applications Heating ventilation air-conditioning and heat recovery systems, cooling systems, industrial
		https://www.ksb.com/en-gb/lc/C89C

Calio Pro Z

Rp DN Q [m³/h] H [m] p [bar] T [°C]	Maintenance-free high-efficiency flanged or screw-ended glandless pump in twin pump design with high-efficiency electric motor and continuously variable differential pressure control. Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
	https://www.ksb.com/en-gb/lc/C09C

In-line pumps

EtaLine Pro

$ \begin{array}{c c} Q \ [m^3/h] & \leq 63, 6 \\ H \ [m] & \leq 42, 9 \\ p \ [bar] & \leq 10 \end{array} $	conditioning applications as well as water supply systems.
--	--

Etaline

Data for 50 Hz operation Also available for 60 Hz Data for 50 Hz operation Data for 50 Hz operation Also available for 60 Hz Data for 50 Hz operation Data for 50 Hz operat		DN Q [m³/h] H [m] p [bar] T [°C]	≤ 700 ≤ 96 ≤ 16 $\geq -30 - \leq +140$ Data for 50 Hz operation	efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATE2 compliant version available. Applications Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems
---	--	--	--	--

Etaline Z

	DN Q [m³/h] H [m] p [bar] T [°C]	< 1095	Description Single-stage volute casing pump in in-line design as twin pump, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. An M12 module (accessory) enables redundant operation of Etaline Z without the need for a higher-level controller. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems https://www.ksh.com/en-gh/lc/E13B
--	--	--------	--

Etaline-R

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1900	Applications
		https://www.ksb.com/en-gb/lc/E22A

ILN

	Q [m³/h] H [m] p [bar]	< 3310	dismantled without removing the piping and the motor. ATEX-compliant version available. Applications Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water
Control unit			https://www.ksb.com/en-gb/lc/I15A

ILNC

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	< 370	IEC frame motor. ATEX-compliant version available. Applications Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water
Control unit			https://www.ksb.com/en-gb/lc/I16A

ILNR

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz opera	≤ 1600 ≤ 93 ≤ 10 $\geq -15 - \leq +70$ ≤ 1450	 Description Vertical volute casing pump in in-line design, single-stage, with closed single-entry impeller. Equipped with replaceable casing wear rings in pump casing and casing cover. ILNR with flexible coupling. Applications Marine applications, cargo tank cleaning, scrubbers, brine circulation, ballast water, bilge water
 Also available for 60	Hz	

Megaline

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600 ≤ 135 ≤ 16	DescriptionVolute casing pump for horizontal or vertical installation, in back pull-out design, single-stage, radially split volute casing, replaceable casing wear rings. Volute casing in in-line design with closed radial impeller, with multiply curved vanes, single mechanical seal to EN 12756.Applications Heating circuits, water supply systems, air-conditioning systems, waste water, industrial recirculation systems
		https://www.ksb.com/en-gb/lc/M51B

Standardised / close-coupled pumps

Etanorm

	wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are
--	---

Etabloc

	DN Q [m³/h] H [m] p [bar] T [°C]	$\begin{array}{l} 25 - 150 \\ \leq 660 \\ \leq 160 \\ \leq 16 \\ \geq -30 - \leq +140 \end{array}$ Data for 50 Hz operation Also available for 60 Hz	sleeve and casing wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to
--	--	---	---

Etachrom B

Q [m³/h] H [m] p [bar] T [°C]	≤ 105 ≤ 105 ≤ 12 $\geq -30 - \leq +110$ Data for 50 Hz operation Also available for 60 Hz	Horizontal single-stage close-coupled circular casing pump, with ratings and main dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available.
		Applications Cleaning systems (bottle rinsing, crate washing, etc.), water treatment plants, water supply systems, fire-fighting systems, spray irrigation systems, general irrigation systems, drainage systems, hot-water heating systems, air-conditioning systems, industrial washing plants, general industry, disposal of paint sludge, surface treatment

Etachrom L

H [m] ≤ 105 p [bar] ≤ 12 T [°C] ≥ -30 - ≤ +110 Data for 50 Hz operation Also available for 60 Hz	magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to
--	---

Etanorm V

Meganorm

	≤ 1160 ≤ 162 ≤ 16	chambor
		https://www.ksb.com/en-gb/lc/M528

Megabloc

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 550	Description Volute casing pump for horizontal or vertical installation, back pull-out design, single-stage, radially split volute casing, flanged or screw-ended (optional), replaceable casing wear rings. Volute casing with closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756. Applications Water supply systems, irrigation systems, air-conditioning systems, building services systems, hotels, shopping centres, etc., fire-fighting systems, cooling circuits, general industry
		https://www.ksb.com/en-gb/lc/M44B

Hot water pumps

HPK-L

	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1160	Applications
KSB Leakage Sensor			https://www.ksb.com/en-gb/lc/H07B

HPK

DN Q [m³/h] H [m] p [bar] T [°C]	< 4150	Description Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single- entry, single-stage, to ISO 2858 / ISO 5199. Optional TRD type testing by TÜV. ATEX-compliant version available. Applications Pumping hot water and thermal oil in piping systems or tank systems, particularly in medium- sized and large hot-water heating systems, forced circulation boilers, district heating systems
		https://www.ksb.com/en-gb/lc/H02A

Pumps

DN Q [m³/h] H [m] p [bar] T [°C]	$\begin{array}{l} 40 - 350 \\ \leq 2350 \\ \leq 225 \\ \leq 110 \\ \geq 0 - \leq +320 \end{array}$ Data for 50 Hz operation Also available for 60 Hz	with radial impeller, single-entry, single-stage. Optional TRD type testing by TÜV. ATEX- compliant version available.
		https://www.ksb.com/en-gb/lc/H01A

RPH-HW

DN Q [m³/h] H [m] p [bar] T [°C]	Applications Registructing betweeter in inductrial plants and small to medium sized power plants
	https://www.ksb.com/en-gb/lc/R48A

Hot water / thermal oil pumps

Etanorm SYT / RSY

	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1900 ≤ 102 ≤ 16	Description Horizontal volute casing pump in back pull-out design, single-stage, with ratings and dimensions to EN 733, radially split volute casing with integrally cast pump feet, replaceable casing wear rings, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, double mechanical seal to EN 12756, drive-end bearings: rolling element bearings, pump-end bearings: plain bearings, with magnetless KSB SuPremE motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation
KSB Leakage Sensor			https://www.ksb.com/en-gb/lc/E44B https://www.ksb.com/en-gb/lc/E23A

Etabloc SYT

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 280 ≤ 68 ≤ 16	Description Volute casing pump for horizontal or vertical installation, back pull-out design, single-stage, with ratings to EN 733, radially split volute casing, replaceable casing wear rings, volute casing with integrally cast pump feet, closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756, product-lubricated carbon plain bearing, grease-lubricated radial ball bearing in the motor housing, with magnetless KSB SuPremE motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation
		https://www.ksb.com/en-gb/lc/E10B

Etaline SYT

	≤ 316 ≤ 69	of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. ATEX-compliant version available.
		https://www.ksb.com/en-gb/lc/E12B

Standardised chemical pumps

MegaCPK

	DN		Description
Sector	Q [m³/h] H [m] p [bar] T [°C]	\leq 3300 \leq 162 \leq 25 \geq -40 - \leq +400 Data for 50 Hz operation Also available for 60 Hz	also available as a variant with "wet" shaft and conical seal chamber. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with
			https://www.ksb.com/en-gb/lc/M48A

CPKN

24	DN	400	Description
	Q [m ³ /h]		
	H [m]	≤ 185	entry, single-stage, to ISO 2858 / ISO 5199. Also available as a variant with "wet" shaft, conical
	p [bar]	≤ 25	seal chamber and/or semi-open impeller. ATEX-compliant version available.
	T [°C]	≥ -40 - ≤ +400	Applications
Jane -	1 [0]	2 10 2 100	Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the
		Data for 50 Hz operation	chemical and petrochemical industries, in refineries, power stations and desalination plants as
Contraction of the second		Also available for 60 Hz	well as in the food industry and general industry.
			https://www.ksb.com/en-gb/lc/C03A

CPKNO

1	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 150 ≤ 25 ≥ -40 - ≤ +400	Horizontal volute casing pump in back pull-out design, with semi-open impeller, single-stage, to ISO 2858 / ISO 5199. ATEX-compliant version available. Applications Pumping appressive organic and inorganic fluids, fluids that tend to polymerise, and slightly gas-
- Mark		Data for 50 Hz operation Also available for 60 Hz	
			https://www.ksb.com/en-gb/lc/C28A

Seal-less pumps

Magnochem

and the second s	DN Q [m³/h] H [m] p [bar] T [°C]	version available.
		https://www.ksb.com/en-gb/lc/M00B

Magnochem 685

		≤ 1160	Applications
--	--	--------	--------------

Magnochem-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C]	< 625	Applications
--	--	-------	--------------

https://www.ksb.com/en-gb/lc/M08B

Etaseco / Etaseco-I

DN Q [m³/h] H [m] p [bar] T [°C]	< 250	Applications Pumping aggressive, flammable, toxic, volatile or valuable liquids in the chemical and petrochemical industries, in environmental engineering and industrial applications.
		https://www.ksb.com/en-gb/lc/E07A

Etaseco RVP

0	DN Q [m³/h] H [m] p [bar] T [°C]		Horizontal or vertical seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 733.
		Also available for 60 Hz	intervals are required. https://www.ksb.com/en-ab/lc/ED5A
Process pumps

RPH

RPH-LF

DN Q [m³/h] H [m] T [°C]	compliant version available
	https://www.ksh.com/en-ah/lc/R29A

RPHb / RPHd / RPHbd

		DN Q [m³/h] H [m] p [bar] T [°C]	≤ 5100 ≤ 550 < 100	Description Heavy-duty horizontal radially split between-bearings volute casing pump to API 610, ISO 13709 (heavy duty), type BB2, with radial impellers, single- or double-entry, single- or two-stage design with centreline pump feet. ATEX-compliant version available. Applications Refineries, petrochemical and chemical industries, offshore and onshore processes.
--	--	--	--------------------------	--

https://www.ksb.com/en-gb/lc/R23B

RPH-V

	≤ 240 > 25	Description Vertical single-stage sump pump to API 610 and ISO 13709 (heavy duty), type VS4, with integral thrust bearing assembly and separate discharge line. ATEX-compliant version available. Applications Refineries, petrochemical and chemical industries, offshore and onshore processes.
		https://www.ksb.com/en-gb/lc/R55A

CHTR

Also availab	≤ 1450 ≤ 4000 ≤ 400 $\geq -60 - \leq +450$ ≤ 7000 Hz operation	Description Horizontal high-pressure barrel-type pump with radial impellers, single-entry and double-entry, multistage, with flanges or weld end nozzles to DIN, API 610 and ANSI. Applications Refineries, petrochemical industry, steam generation, seawater injection in crude oil production (onshore and offshore)
		https://www.ksb.com/en-gb/lc/C38A

CHTRa

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1200 ≤ 1550 ≤ 155 ≥ -40 - ≤ +205	casing and back-to-back impeller arrangement to API 610 (ISO 13709), type BB3. First stage optionally available in double-entry design for low NPSH requirements. ATEX-compliant version available.
		https://www.ksb.com/en-gb/lc/C18A

CINCP / CINCN

	O [m³/h] < 780	Description Vertical immersion pump in cantilever design for wet or dry installation. Semi-open impeller, pump shaft without guide bearings, supported by ball bearings in the upper section of the pump
I	p [bar] ≤ 10 T [°C] ≥ -10 - ≤ +100 n [rpm] ≤ 3000	pipe (CINCN). ATEX-compliant version available. Applications
5 ···	Data for 50 Hz operation Also available for 60 Hz	
		https://www.ksb.com/en-gb/lc/C39A https://www.ksb.com/en-gb/lc/C30A

INVCP

ţ	Q [m³/h] ≤ H [m] ; p [bar] T [°C] ≥-10 - ≤	 Description Vertical immersion pump for wet or dry installation, available with closed or semi-open impelle Supplied with discharge pipe extending above the baseplate (INVCP) or without discharge pipe (INVCN). ATEX-compliant version available. Applications Pumping chemically aggressive, slightly contaminated or solids-laden fluids in the chemical and petrochemical industries.
		https://www.ksb.com/en-gb/lc/l22A

Estigia

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz Also available	≤ 1160 ≤ 110 ≤ 16 $\geq -30 - \leq +100$ ≤ 3000 operation	specific fluid requirements. Supplied with discharge pipe extending above the cover plate, DN according to nominal flow rate. Sealing by lip seal, single or double cartridge mechanical seal. ATEX-compliant version available.
KSB SuPremF, PumpDrive	. Frequency inverter		https://www.ksb.com/en-ab/lc/V20A

RWCP / RWCN

Ţ	≤ 700 ≤ 100 ≤ 16	Description Process pump with vortex impeller, semi-open or two-channel / three-channel impeller. Shaft sealed by mechanical seal or gland packing in accordance with various API piping plans. Oil- lubricated bearings. ATEX-compliant version available. Applications Refineries, chemical and petrochemical industries, steel works, descaling units, raw materials extraction, waste water management.
		https://www.ksb.com/en-gb/lc/R66A https://www.ksb.com/en-gb/lc/R65A

Р	u	m	מו	s
	~	••	۰r	

WKTR

Q [m³/h] H [m] p [bar] T [°C] ≥ -40 -	≤ 400 ≤ 500 ≤ 51	Applications Pumping condensate and other NPSH-critical products in industrial plants, particularly in refineries and petrochemical plants.
		https://www.ksb.com/en-gb/lc/W18A

Domestic water supply / swimming pool pumps

MultiEco

	Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 8 ≤ 54	systems and washing plants, water supply and rainwater harvesting
Controlmatic, Cervomatic			https://www.ksb.com/en-gb/lc/M17A

MultiEco Pro

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 8 ≤ 54 ≤ 10	Description Multistage self-priming centrifugal pump in close-coupled design, with power cable, plug and Controlmatic E automatic control unit starting and stopping the pump in line with consumer demand and protecting it against dry running. Automated with automatic control unit. Applications Single- or two-family houses, agricultural facilities, spray irrigation systems, general irrigation systems and washing plants, water supply and rainwater harvesting.
		https://www.ksb.com/en-gb/lc/M18A

MultiEco Top

Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Da	≤ 8 ≤ 54 ≤ 10	Multistage self-priming centrifugal pump in close-coupled design incl. accumulator with replaceable membrane in drinking water quality, total volume 20 or 50 litres, pressure switch for automatic pump operation and 1.5-metre power cable with plug.
		https://www.ksb.com/en-gb/lc/M19A

Ixo N

J	Rp Q [m³/h] H [m] T [°C] n [rpm]	≤ 8 ≤ 65 > ±5 - < ±35	Description Multistage close-coupled centrifugal pump for fully or partly submerged operation (min. immersion depth 0.1 m), with low-level inlet, suction strainer with a max. mesh width of 2.0 mm. Applications Water supply systems, spray irrigation systems, general irrigation systems, washing plants, rainwater harvesting and water extraction from wells, reservoirs and rainwater storage tanks
Control unit, Cervomatic			https://www.ksb.com/en-gb/lc/I34A

Pumps

$\begin{array}{llllllllllllllllllllllllllllllllllll$	separate 15 metro UO7 DN 5 neuron seble with sheet much fully induded
	https://www.ksb.com/en-gb/lc/106A

Filtra N

Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≤ 36	Description Single-stage self-priming centrifugal pump in close-coupled design. Applications Pumping clean or slightly contaminated water, swimming pool water with a max. chlorine content of 0.3 %; ozonised swimming pool water with a max. salt content of 7 ‰.
		https://www.ksb.com/en-gb/lc/F00A

Pressure booster systems

DeltaMacro

Rp Q [m³/h] H [m] p [bar] T [°C]	< 960	Description Fully automatic package pressure booster system with two to four (F) / six (VC/SVP) vertical high- pressure pumps; available in cascade-controlled and two variable speed designs. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinet-mounted frequency inverter (VC) or motor-mounted PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Automated with KSB BoosterCommand Pro Plus. Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		https://www.ksb.com/en-gb/lc/D12A

DeltaCompact

	Rp Q [m³/h] H [m] p [bar] T [°C]	≤ 18	Description Fully automatic ready-to-connect package single-pump pressure booster system / dual-pump pressure booster system with variable speed system Applications Domestic water supply, water supply systems, spray irrigation systems, general irrigation systems, service water systems, rainwater harvesting
--	--	------	--

https://www.ksb.com/en-gb/lc/D05B

DeltaBasic

Rp Q [m³/h] H [m] p [bar] T [°C]	1 1/2 ≤ 88 ≤ 134 ≤ 16 ≥ 0 - ≤ +60 Data for 50 Hz operation	Fully automatic pressure booster system with two to three (MVP) / four (SVP) vertical high- pressure pumps in two variable speed versions. The MVP and SVP variable speed versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or by PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Equipped with a central fuse box. Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.
		https://www.ksb.com/en-gb/lc/D07A

DeltaPrimo

Rp Q [m³/h] H [m] p [bar] T [℃]	1 1/2 ≤ 88 ≤ 134 ≤ 16 ≥ 0 - ≤ +60 Data for 50 Hz operation	Fully automatic package pressure booster system with two to three (VC) / four (F/SVP) vertical high-pressure pumps; available in cascade-controlled and two variable speed designs. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinet-mounted frequency inverter (VC) or motor-mounted
		https://www.ksb.com/en-gb/lc/D08A

DeltaSolo

Į.	k	Rp Q [m³/h] H [m] p [bar] T [°C]	< 76	Fully automatic single-pump system available in two variable speed versions. The MVP and SVP variable speed versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP) or by PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Applications Water supply systems for residential buildings and office buildings, irrigation systems and rainwater harvesting systems, service water supply systems, in trade and industry.
				https://www.ksb.com/en-gb/lc/D11A

DeltaSolo D

DN 100 $Q [m^3/h] \leq 110$ H [m] < 160	Description Fully automatic package single-pump system with 8-litre membrane-type accumulator. The system is started and stopped as a function of pressure. Applications Water supply systems for residential and office buildings, irrigation and spray irrigation, rainwater harvesting and service water supply systems in trade and industry.
	https://www.ksh.com/en-ah/lc/H17A

Hya-Solo D FL

	Rp	1	Description
	DN	100	Fully automatic package single-pump system. The system is started and stopped as a function of
2.4L2	Q [m³/h]	≤ 110	pressure. Design and function as per DIN 14462.
<u>n 4</u>	H [m]	≤ 160	Applications
💭 👘 👘	p [bar]	≤ 16	Fire-fighting systems to DIN 14462
	T [°C]	≥ 0 - ≤ +70	
		Data for 50 Hz operation	
			https://www.ksb.com/en-gb/lc/H16A

Hya-Duo D FL

Hya-Duo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	< 48	Applications
		https://www.ksb.com/en-gb/lc/H46A

Hya-Duo D FL-R

iliting.	DN	150	Description
	Q [m³/h]	≤ 96 / 192	Fully automatic ready-to-connect break tank package booster set for fire fighting, comprising
22	H [m]	≤ 160	one duty system and one stand-by system to ensure system redundancy. The system is started and stopped as a function of pressure. Design and function as per DIN 14462.
	p [bar]	≤ 16	
	T [°C]	≥ 0 - ≤ +70	Applications
			Fire fighting (break tank package booster set) in residential buildings and department stores,
2.14		Data for 50 Hz operation	commercial and industrial plants, multi-storey car parks, for underground hydrants and surface
			hydrants
			https://www.ksb.com/en-gb/lc/H26A

Surpress Feu SFE

Rp Q [m³/h] H [m] p [bar] T [°C]	stopping. Automated with BoosterControl.
	https://www.ksb.com/en-gb/lc/SC3A

KSB Safety Boost

DN Q [m³/h] H [m] p [bar] T [°C]	≤7 <75	Description Ready-to-connect break tank package booster set for drinking water to DIN EN 1717 (type AB) for the safe separation of drinking water and liquids of category 5 Applications Troughs, rainwater harvesting systems, car washes, supply lines in waste water treatment plants, funeral parlours with hydro-aspirators, public pools, food processing plants, laundries, butchers, dental surgeries and pathological facilities
		https://www.ksb.com/en-gb/lc/SA2A

Drainage pumps / grey water pumps

AmaDrainer 3

301 303 322 34	Rp Q [m³/h] H [m] T [°C]	< 13 5	Description Vertical single-stage fully floodable submersible motor pump in close-coupled design, with integrated level switch for automatic control or optionally for control via external control unit. The maximum immersion depth is 2 metres. Applications Automatic drainage of pits, shafts, yards and basements prone to flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.
Control unit, LevelControl			https://www.ksb.com/en-gb/lc/A07B

AmaDrainer 4/5

	Rp Q [m³/h] H [m] T [°C]	< 50	 Description Vertical single-stage fully floodable submersible motor pump in close-coupled design, IP68, with or without level control, max. immersion depth: 7 m. Applications Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.
Control unit. LevelContro	ol		https://www.ksb.com/en-gb/lc/A76A

AmaDrainer 80/100

	DN 100 O [m³/h] < 130	 Description Vertical single-stage fully floodable submersible motor pump in close-coupled design, IP68, with or without level control, max. immersion depth: 10 m. Applications Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.
Control unit Louis Contro		https://www.kch.com/on.ch/ls/A76A

Control unit, LevelControl

Ama-Porter F / S

	DN Q [m³/h] H [m] T [°C]	≤ 40 ≤ 16	DescriptionVertical single-stage fully floodable submersible grey water pump in close-coupled design (grey cast iron variant), non-explosion-proof.Applications Handling grey water, especially waste water containing long fibres and solid substances, liquids containing gas/air, removing waste water from flooded rooms and surfaces.
Control unit, LevelContr	ol		https://www.ksb.com/en-gb/lc/A10A

Rotex

Q [m³/h] s H [m] s T [°C] $\geq 0 - \leq$ n [rpm] ≤ 2	 2 Description Vertical single-stage centrifugal pump with discharge to the top and parallel with the pump 4 shaft, pump base designed to act as suction strainer. Pump and motor are rigidly connected by a 5 support column. Supplied ready to be plugged in, with 1.5-metre power cable and level switch. Applications Automatic drainage of buildings, pits and tanks, lowering of surface water levels and drainage.
	https://www.ksb.com/en-gb/lc/R04A

MK / MKY

		H [m] \leq T [°C] \geq -10 - \leq +2 n [rpm] \leq 35	in the secondary circuits of heat transfer systems (IVIK Y).
Control un	it, LevelContro	ol	https://www.ksb.com/en-gb/lc/M02A

Lifting units / package pump stations

Amaclean

•	Ø [mm] DN Installation depth [m]	50 - 100	Description Self-cleaning tank insert for grouted installation in new concrete structures or in concrete structures in need of refurbishment. Designed to prevent soiling of the structure and clogging of the pumps by heavily waste or fibre loaded waste water. Suitable for pump stations emitting unpleasant odours and/or gases. Applications Waste water disposal, rainwater disposal
			https://www.ksb.com/en-gb/lc/A15A

AmaDrainer Box Mini

AmaDrainer Box

 10 10 22 <i>u</i>	DN Q [m³/h] H [m] T [°C]	Data for 50 Hz operation Also available for 60 Hz	< 46	Description Stable above-floor plastic collecting tank or impact-resistant underfloor plastic collecting tank, with floor drain and odour trap, both with AmaDrainer submersible motor pump starting and stopping automatically and swing check valve Applications Automatic disposal of waste water from washbasins, showers, washing machines, garage driveways, basements and rooms prone to flooding
				https://www.ksb.com/en-qb/lc/A23A

Evamatic-Box N

DN Q [m³/h] H [m] T [°C]	Applications
	https://www.ksb.com/en-gb/lc/EB7A

MiniCompacta

DN Q [m³/h] H [m] T [°C]	≤ 36 < 25	Description Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of domestic waste water and faeces in building sections below the flood level. Applications Basement flats, bars, basement party rooms, basement saunas, cinemas, theatres, department stores, hospitals, hotels, restaurants, schools.
		https://www.ksb.com/en-gb/lc/M09B

Compacta

1	DN Q [m³/h] H [m] T [°C]	≤ 145 < 24.5	Description Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of waste water and faeces in buildings and building sections below the flood level. Applications Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, other public buildings, industrial facilities, underground train stations or for joint sewage disposal from rows of houses.
			https://www.ksb.com/en-gb/lc/C00B

CK 800 Pump Station

	DN	32 - 50	Description
	Q [m³/h]		Single-pump station / dual-pump station as ready-to-connect package system, with PE-LLD
LE.	H [m]	≤ 49	(polyethylene) collecting tank for buried installation. Equipped with either one or two
	T [°C]	≤+40	submersible waste water pumps of type Amarex N S (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476.
Sec. B.	Data for 50 Hz operation		Applications
9			Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
			https://www.ksb.com/en-gb/lc/C05A

CK 1000 Pump Station

-1.	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	< 40 3	Description Single-pump station / dual-pump station as ready-to-connect package system, with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
			https://www.ksb.com/en-gb/lc/C05A

Ama-Porter CK Pump Station

DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	≤ 40	Description Single-pump station / dual-pump station as ready-to-connect package system, with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Ama-Porter (non-explosion-proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
		https://www.ksb.com/en-gb/lc/C05A

SRL

ŧ.	ŧ.	DN Q [m³/h] H [m] T [°C]	Data for 50 Hz operation	< 280	Description Package pump station with tank made of glass fibre reinforced polyester, equipped with two dry- installed Sewabloc pumps with a rating of 2.2 to 30 kW, integrated valves and a control unit with frequency inverters. Pump operation is adjusted in line with flow rate demand, thus minimising energy costs. This maintenance-friendly pump station prevents intermediate storage of waste water and the related odour nuisance. Applications Joint disposal of domestic, municipal and industrial waste water to the sewer system / waste water treatment plant
					https://www.ksb.com/en-gb/lc/S93A

SRA

1		
AmaControl, LevelCon	trol	https://www.ksb.com/en-gb/lc/S90A

Submersible motor pumps

Amarex

	DN Q [m³/h] H [m] T [°C]	≤ 320	Description Vertical single-stage submersible motor pump for wet installation, with vortex impeller (F-max) or open dual-vane impeller (D-max), stationary or transportable version. Single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available. Applications Waste water transport, waste water management, drainage systems, waste water treatment plants, stormwater transport, recirculation, sludge treatment
Control unit, LevelContro	d i		https://www.ksb.com/en-gb/lc/A31B

Amarex N

		≤ 190	Description Vertical single-stage submersible motor pump for wet installation, with cutter (S), stationary or transportable version. Amarex N pumps are floodable, single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available. Applications Pumping waste water, especially untreated waste water containing long fibres and solid substances, liquids containing gas or air, and raw, activated and digested sludge; dewatering and water extraction, drainage of rooms and areas at risk of flooding.
Control unit, LevelContro	ol		https://www.ksb.com/en-gb/lc/A31A

Amarex KRT

	DN Q [m³/h] H [m] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 10080	Applications
PumpDrive, AmaControl.	LevelControl		https://www.ksb.com/en-ab/lc/A30B

Submersible pumps in discharge tubes

Amacan K

<u>k</u>	DN Q [m³/h] H [m]	≤ 5400 < 30	Description Wet-installed submersible motor pump for installation in discharge tubes, with channel impeller, single-stage, single-entry. ATEX-compliant version available. Applications
A.	$O[m^3/h]$		
		< 30	single-stage, single-entry. ATEX-compliant version available.
	T [°C]	> 0 - < +40	Applications
	n [rpm]	≤ 980	Handling pre-cleaned chemically neutral waste water, industrial effluent and sewage, fluids not containing any stringy substances, pre-treated by screens or overflow sills; as waste water,
		Data for 50 Hz operation	combined sewage and activated sludge pumps in waste water treatment plants, irrigation and
		Also available for 60 Hz	drainage pumping stations.
AmaControl			https://www.ksb.com/en-gb/lc/A05A

Amacan P

	Q [m³/h] ≤ 25200 H [m] ≤ 12 T [°C] > 0 - < +40	Description Wet-installed submersible motor pump for installation in discharge tubes, with axial propeller in ECB design, single-stage, single-entry. ATEX-compliant version available. Applications Irrigation and drainage pumping stations, for stormwater transport in stormwater pumping stations, raw and clean water transport in water and waste water treatment plants, cooling water transport in power stations and industrial plants, industrial water supply, water pollution control and flood control, aquaculture.
AmaControl		https://www.ksb.com/en-gb/lc/A28A

Amacan S

Pumps

	DN Q [m³/h] H [m] T [°C] n [rpm]	≤ 10800 ≤ 40 > 0 - < +40	DescriptionWet-installed submersible motor pump for installation in discharge tubes, with mixed flow impeller, single-stage. ATEX-compliant version available.ApplicationsPumping water not containing stringy material in irrigation and drainage pumping stations, general water supply systems, water pollution control and flood control.
			general water supply systems, water pollution control and flood control.
AmaControl			https://www.ksb.com/en-gb/lc/A29A

Mixers / agitators / tank cleaning units

AmaProp

	Propeller Ø [mm] T [°C] Installation depth [m] Also available for 60 H	≥ 0 - ≤ +40 ≤ 12	Description Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, with coaxial spur gear drive. Explosion-proof version available. Applications In environmental engineering, particularly in municipal and industrial waste water and sludge treatment, for circulating, keeping in suspension and inducing flow in nitrification tanks and denitrification tanks, activated sludge tanks, biological phosphate elimination tanks, flocculation tanks and sludge storage tanks
AmaControl			https://www.ksb.com/en-gb/lc/A11B

Amamix

Spill	- < +40	DescriptionHorizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, direct drive.ATEX-compliant version available.ApplicationsHandling municipal and industrial waste water and sludges as well as applications in environmental engineering.
AmaControl		https://www.ksb.com/en-gb/lc/A09A

Amaline

6	9N } [m³/h] I [m] □ [°C] □ [rpm]	≤ 6600 ≤ 2,5 ≥ 0 - ≤ +40	Applications
AmaControl			https://www.ksh.com/en-gh/lc/A08B

Pumps for solids-laden fluids

Sewatec

Sewatec SPN

	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz op Also available for	≤ 32400 ≤ 115 ≤ 16 ≤ +70 eration	Description Vertical volute casing pump with multi-channel impellers (K), discharge flange to DIN and ANSI standards. Applications Waste water transport, waste water disposal, waste water management, transport of contaminated surface water
--	---	--	--

Sewabloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 1000	Close-coupled volute casing pump for horizontal or vertical installation, with various next- generation impeller types, discharge flange to DIN and ANSI standards. Explosion-proof version available. Applications Waste water transport, waste water disposal, waste water management, transport of
PumpDrive, LevelControl			https://www.ksb.com/en-gb/lc/S01B

•

KWP

KWP-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 325 ≤ 100 ≤ 10	available with various impeller types: closed multi-channel impeller, open multi-vane impeller and vortex impeller. Applications Paper industry, cellulose industry, sugar industry, food industry, chemical industry, petrochemical industry, flue gas desulphurisation, industrial engineering, waste water transport
PumpDrive			https://www.ksb.com/en-gb/lc/K09A

Slurry pumps

WBC

Q [m³/h] H [m] p [bar] T [°C]	≤ 80 ≤ 32	DescriptionPatented design with state-of-the-art hydraulic system and highly wear-resistant materials for high-pressure applications. The pump casing is designed to withstand maximum stresses, e.g. during pressure surges.Applications ldeal for the single-stage or multistage transport of ore and tailings over long distances and for dredging.
		https://www.ksb.com/en-gb/lc/W09A

LSA

Q [m³/h] H [m] p [bar] T [°C]	- 00	Description Premium design white cast iron pump for long service life handling severe slurries. The maintenance-friendly single-wall construction and heavy section white cast iron wet end combined with the cartridge bearing assembly provide maximum reliability, a long service life and ease of maintenance. Applications Ore and tailings transport, dredging (dry-installed or submerged operation) and industrial processes.
		https://www.ksb.com/en-gb/lc/L14A

LCC-M

Q [m³/h] H [m] p [bar] T [°C]	< 90	 Description A high-efficiency slurry pump with excellent wear properties over a broad operating range. The wetted pump end (casing, impeller and suction cover / liner) is made of white cast iron with a high chromium content. Design optimised for easy dismantling and reassembly for maintenance and inspection work. The maximum permissible working pressures are between 8 and 16 bar, depending on the pump size. Perfectly suited for transporting fluids containing hardly to slightly abrasive solids. Ideal for sludges, classes 1 to 2. Applications Reliable pump for high heads and moderately corrosive slurries. Used in mine dewatering, ash and tailings transport and dredging.
		https://www.ksb.com/en-gb/lc/L13A

LCC-R

Q [m³/h] H [m] p [bar] T [°C]	≤ 42	Applications The pumps are suitable for moderate heads, fine particles and highly corrosive slurries.
		https://www.ksb.com/en-gb/lc/L19A

TBC

O	Q [m³/h] H [m] p [bar] T [°C]	< 00	Description Horizontal high-pressure end-suction centrifugal pump offering maximum resistance to wear and ease of maintenance. The conventional single-wall design transfers stress loads from the wear parts to the casing covers in high-pressure applications. Pump components made of highly wear-resistant white cast iron. Applications
VTU U			High-head high-flow hydrotransport of mined ore, tailings, dredged material, for pipeline booster stations and other severe duties.
			https://www.ksb.com/en-gb/lc/T08A

LCV

F	Q [m³/h] H [m] p [bar] T [°C]	≤ 77	Description Robust vertical cantilever pump with bottom suction and no submerged bearings. Design with open and closed impeller for best efficiency, and maximum free passage. Wetted pump-end wear parts (casing, impeller, suction plate / liner) made of high-chrome white cast iron for excellent wear characteristics. Maximum permissible working pressures range from 7 to 11 bar, depending on the size. Ideal for transporting class 1 and class 2 slurries. Applications Particularly suitable for heavy-duty industrial processes and wash-down sump pump applications.
			https://www.ksb.com/en-gb/lc/L11A

FGD

Q [m³/h] H [m] p [bar] T [°C]	Description High-flow / low-head white cast iron pump with single-wall casing and high-efficiency impeller. Single-piece suction cover with integrated mounting plate. Applications Flue gas desulpurisation systems and process circuits
	https://www.ksb.com/en-gb/lc/F01A

MHD

$ \begin{array}{c} \label{eq:plane} \begin{tabular}{c} red ge applications. \\ \begin{tabular}{c} p \ [bar] & \leq 13 \\ T \ [^{\circ}C] & \geq -20 - \leq +120 \end{array} \end{array} & \end{tabular} \begin{tabular}{c} dred ge applications. \\ \begin{tabular}{c} Applications \\ Include \ hopper \ dred ges or as the main pump on cutter \ dred ges \\ Include \ hopper \ dred ges or as the main pump on cutter \ dred ges \\ \end{tabular} \end{tabular} \begin{tabular}{c} begin{tabular}{c} dred ge applications. \\ \end{tabular} \e$	efficiency for severe medium-head dredges.
--	---

LHD

Q [m³/h] H [m] p [bar] T [°C]	< 65	Description High-flow/low-head design with balanced NPSHR and free passage for high-volume transportation over short distances. Applications Include sand and gravel and severe, low-head dredge applications such as a ladder pump.
		https://www.ksb.com/en-ab/lc/L12A

MDX

Q [m³/h] H [m] p [bar] T [°C]	≤ 51 ≤ 14	Applications Designed for SAG and ball mill discharge duties, cyclone feed, screen feed and other ore mining and treatment processes.
		https://www.ksb.com/en-gb/lc/M42A

ZW

U.	Q [m³/h] H [m] p [bar] T [°C]	< 60	DescriptionDouble-suction vertical cantilever pump with no submerged bearings. Exclusive top and bottomsuction for high-concentration pumpability and maximum clearing of pump. Wetted pump-endwear parts (casing, impeller, hub plate / liner) made of high-chrome white cast iron for excellentwear characteristics. Ideal for transporting class 1 and class 2 slurries.ApplicationsParticularly suitable for industrial processes and wash-down sump pump applications.
			https://www.ksb.com/en-gb/lc/Z22A

HVF

Q [m³/h] H [m] p [bar] T [°C]	< 50	Description A high-efficiency pump that has been specially developed for handling air entrained slurries. The design features a patented impeller and a venting chamber that removes the air contained in the fluid handled from the impeller eye, preventing blockage and reducing downtime. The wetted pump end (casing, impeller and suction plate / liner) is made of white cast iron with a high chromium content. This increases the service life of the components. Urethane is also available as a material. The maximum permissible working pressures are between 8 and 11.5 bar, depending on the pump size. Perfectly suited for transporting fluids containing hardly to slightly abrasive solids. Ideal for sludges, classes 1 to 2. Applications For use in all froth pumping applications in the mineral processing and industrial minerals industries.
		https://www.ksb.com/en-gb/lc/HA4A

DWD

Q [m³/h] H [m] p [bar] T [°C]	≤ 90	resistant casing, side liners and curved-vane impeller) are made of high-chrome white iron. While the internal wear parts handle abrasive slurries, the outer casing acts as the high pressure containment component for safety. Designed primarily for use in ocean going vessels, the DWD dredge pump is a robust design, built to withstand the world's most aggressive dredge applications. Applications Inboard and underwater pumps for cutter suction dredges (CSD) and trailing suction hopper dredges (TSHD).
		https://www.ksb.com/en-gb/lc/D06A

TDW

H [m] ≤	robust mechanic end ensures reliable operation in a wide range of operating conditions. The wet-end wear components including the high speed capable impeller are made of high chrome cast white iron for maximum wear life and long production cycles. Applications Developed to meet the unique requirements of tailings pond dewatering services where seal flush water is not available. Ideal for water reclamation service where solids are present and high head is required.
	https://www.ksb.com/en-gb/lc/T07A

Self-priming pumps

Etaprime L

DN Q [m ³ /h] H [m] p [bar] T [°C] H _{geo} [m]	≤ 180 ≤ 85 < 10	Pumping clean contaminated or aggressive fluids not containing abrasive substances and solids
		https://www.ksb.com/en-gb/lc/E25B

Etaprime B

		DN Q [m³/h] H [m] p [bar] T [°C] H _{geo} [m]	≤ 130 ≤ 70 < 10	coupled; pump shaft and motor shaft rigidly connected; ATEX-compliant version available. Applications Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service water systems, drainage, dewatering systems, fire-
--	--	--	-----------------------	--

EZ-B/L

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	with mechanical seal. Applications Boiler feed, sanitary hot water, hydrophore systems for fresh or seawater and fresh water pre- heating.
	https://www.ksb.com/en-gb/lc/E34A

https://www.ksb.com/en-gb/lc/E35A

AU

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600 ≤ 52 < 10	Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.
		http://www.ksh.com/on-gh/lc/A93A

AU Monobloc

	≤ 53 ≤ 37 ≤ 10	Description Horizontal self-priming centrifugal pump in close-coupled design, open or semi-open impeller, adjusted via wear plate, with mechanical seal, driven by electric motors or internal combustion engines; ATEX-compliant version available. Applications Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.
		https://www.ksb.com/en-gb/lc/A94A

Submersible borehole pumps

UPA C 100 EN

UPA C 100 EE

	DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	Multistage centrifugal pump in ring-section design made of stainless steel for well diameters of
Control unit, Cervomatic,	UPA Control	https://www.ksb.com/en-gb/lc/U04A

UPA C 150

O [m ³ /h] < 79	Description All-stainless steel single-stage or multistage centrifugal pump in ring-section design, suitable for vertical or horizontal installation, for well diameters of 150 mm (6 inches) and above. Applications Spray irrigation systems, general irrigation systems, drawdown of groundwater levels, domestic water supply, fountains, heat pump systems, water supply systems
	https://www.ksh.com/on.gh/lc/116A

PumpDrive, KSB UMA-S

nttps://www.ksb.com/en-gb/lc/U16A

UPA 200, UPA 250

Ĩ	DN Q [m³/h] H [m] T [°C]	diameters of 8 inches and above
PumpDrive, KSB UMA-S		https://www.ksb.com/en-gb/lc/U17A https://www.ksb.com/en-gb/lc/U19A

UPA 300, UPA 350

	DN	300 - 350	Description
-	Q [m³/h]	≤ 840	Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or
	H [m]	≤ 480	horizontal installation. Mixed flow hydraulic systems with trimmable impellers. Optionally available with lift check valve or connection branch. For well diameters of 12 inches and above.
12	T [°C]	≤ +50	
		Data for 50 Hz operation	Applications
		Also available for 60 Hz	Pumping clean or slightly contaminated water in general water supply, spray irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure
8			booster systems, mining, fire-fighting systems, emergency water supply, etc.
PumpDrive, KSB UMA-S			https://www.ksb.com/en-gb/lc/U20A https://www.ksb.com/en-gb/lc/U21A

UPA 400 - UPA 1100

UPA D

	DN Q [m ³ /h] H [m] T [°C] Data for 50 Hz operation Also available for 60 Hz	≤ 5000 < 1500	DescriptionMultistage double-entry centrifugal pump in ring-section design for vertical or horizontal installation.ApplicationsPumping clean or slightly contaminated water, seawater, liquefied gases and oils in water supply, offshore and cavern applications and in groundwater management.
--	--	------------------	--

UPA S 200, UPA S 250

	DN Q [m³/h] H [m] T [°C]	~ 310	DescriptionSingle-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Optionally available with lift check valve or connection branch. For well diameters of 8 inches and above.Applications For pumping clean or slightly contaminated water in general water supply, spray irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, fire-fighting systems, emergency water supply, etc.
PumpDrive, KSB UMA-S			https://www.ksb.com/en-gb/lc/U17A

Vertical turbine pumps

B Pump

$O[m^{3}/h]$ < 2600	Vertical turbine pump conforming to AWWA E101-88 and designed with radially split interchangeable pump bowls, wear rings and impellers; column assembly with interchangeable column bearings and lengths of column pipes for variable immersion depths. Applications Pumping clean water in agriculture, collection and irrigation, public water supply, industry, fire-
	https://www.ksb.com/en-gb/lc/B60A

High-pressure pumps

Comeo

Movitec H(S)I

	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 27 < 105	synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/M06A

Movitec

	Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	25 - 125 ≤ 160 ≤ 401 ≤ 40 ≥ -20 - ≤ +140	Description Multistage vertical high-pressure centrifugal pump in ring-section design with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design), close-coupled. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2:2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX- compliant version available. Applications Spray irrigation, general irrigation, washing, water treatment, fire-fighting and pressure booster systems, hot water and cooling water recirculation, boiler feed systems, etc.
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/M12A

Movitec VCI

		Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 22,5 < 249	
KSB SuPremE, PumpDrive				https://www.ksb.com/en-gb/lc/M94A

Multitec

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1500 ≤ 1000 ≤ 100	Description Multistage horizontal or vertical centrifugal pump in ring-section design, long-coupled or close-coupled, with axial or radial suction nozzle, cast radial impellers and motor-mounted variable speed system. ATEX-compliant version available. Applications Water supply, drinking water supply, industry, pressure boosting, irrigation, power stations, heating systems, filtering systems, fire-fighting systems, reverse osmosis systems, snow-making systems and washing plants, and geothermal systems (re-injection of geothermal water into the aquifer).
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/M07A

WKL

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 450 ≤ 300	Description Multistage horizontal centrifugal pump in ring-section design, with radial suction nozzle and closed radial impellers. Applications Transport of raw water and drinking water, applications in industry, pressure boosting, irrigation, sprinkler systems, drainage, etc.
		https://www.ksb.com/en-gb/lc/W15B

Axially split pumps

Omega

	DN Q [m³/h] H [m] p [bar] T [°C] ≥ n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 4400 ≤ 210 ≤ 25 ≥ 0 - ≤ +140 ≤ 2900	entry radial impeller, mating flanges to DIN, EN or ASME. Applications Pumping water with a low solids content, e.g. in waterworks, irrigation and drainage pumping stations, extraction duties in desalination systems, power stations, fire-fighting systems.
PumpDrive, PumpMeter, Frequency inverter			https://www.ksb.com/en-gb/lc/000A

RDLO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 10000 ≤ 290	entry radial impeller, mating flanges to DIN, EN or ASME. Applications Pumping water with a low solids content, e.g. in waterworks, irrigation and drainage pumping stations, extraction duties in desalination systems, power stations, fire-fighting systems.
PumpMeter, Frequency inverter			https://www.ksb.com/en-gb/lc/R08A

RDLP

GNG	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	< 18000	 Description Axially split volute casing pump for horizontal installation, with one, two or three stages and double-entry radial impeller, mating flanges to DIN, ISO or ANSI. Applications Pumping water with a low solids content, e.g. in waterworks and long-distance water supply.
Frequency inverter			https://www.ksb.com/en-gb/lc/R09A

Hygienic pumps

Vitachrom

	DN Q [m³/h] H [m] p [bar] T [°C]	\leq 340 \leq 100 \leq 12 \geq -30 - \leq +110 Data for 50 Hz operation Also available for 60 Hz	1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system. The pump features a semi-open impeller and electropolished surfaces. It is
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/V00A

Vitacast

	DN	32 - 200	Description
		≤ 540 ≤ 105 ≤ 10 $\geq -20 - \leq +140$ for 50 Hz operation available for 60 Hz	0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume: open impeller.
	Other ratings possible on request		version available. Applications Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.
KSB SuPremE, PumpDrive, PumpMeter			https://www.ksb.com/en-gb/lc/V01A

Vitacast Bloc

	O [m ³ /h] < 3/(Description Service-friendly volute casing pump with magnetless KSB SuPremE motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/ IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume; open impeller, electropolished surface, excellent efficiency. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible), certified by the TNO Nutrition and Food Research Institute to EHEDG standards. All materials comply with FDA standards and EN 1935/2004. Trolley available Applications Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.
KSB SuPremE, PumpDrive	e, PumpMeter	https://www.ksb.com/en-gb/lc/V05A

Vitaprime

	DN		Description
STATE .	Q [m³/h]	≤ 58	Service-friendly close-coupled side-channel pump (self-priming) with magnetless KSB SuPremE
PARD.	H [m]	≤ 45	motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent
TAL	p [bar]	≤ 10	motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Hygienic design for the highest
	T [°C]	≥ -20 - ≤ +100	cleanability requirements (CIP/SIP-compatible). All materials comply with FDA standards and
		Data for 50 Hz operation	EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available.
		Also available for 60 Hz	Applications
	Othe	er ratings possible on request	Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.
KSB SuPremE, PumpDrive			https://www.ksb.com/en-gb/lc/V07A

Vitastage

0	Q [m³/h]	≤ 12,5	Description
CALL STATUS	H [m]	≤ 150	Multistage centrifugal pump in close-coupled design for vertical or horizontal installation. All
	p [bar]	≤ 16	wetted components are made of 1.4401/1.4408 (AISI 316/CF8M) stainless steel. Versatile, robust
Y.	T [°C]	≥ -20 - ≤ +140	wetted components are made of 1.4401/1.4408 (AISI 316/CF8M) stainless steel. Versatile, robust and especially energy-efficient. CIP/SIP-compatible. All materials comply with FDA standards and EN 1935/2004. Trolley also available among other accessories.
		Data for 50 Hz operation	Applications
8- mer		Also available for 60 Hz	Processes with hygienic requirements in the food and beverage industries and in the chemical
	Othe	er ratings possible on request	industry.
			https://www.ksb.com/en-ab/lc/V08A

Vitalobe

	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 vertical orientation of connections. Hygienic design, excellent CIP/SIP compatibility due to its almost complete lack of dead volume or narrow clearances. All wetted components made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel; various rotor types, shaft seals and process connections available. Installed as a pump set with gear unit and standardised motor. Vitalobe is EHEDG-certified. The pump elastomers comply with the FDA standards and EN 1935/2004. Accessories include a trolley, a heatable casing or casing cover and a pressure relief arrangement. ATEX-compliant version available. Applications Hygienic and gentle handling of sensitive or high-viscosity fluids in the food, beverage and pharmaceutical industries, the chemical industry and general process engineering.
KSB SuPremE, PumpDrive	e	https://www.ksb.com/en-gb/lc/V06A

Pumps for power station conventional islands

CHTC / CHTD

HGB / HGC / HGD

HGI

HGM

$\begin{array}{lll} Q \; [m^3/h] & \leq \\ H \; [m] & \leq 1 \\ p \; [bar] & \leq \\ T \; [^{\circ}C] & \leq + \end{array}$	≤ 390 1400	Description Horizontal radially split product-lubricated multistage ring-section pump with radial impellers, axial and radial single-entry inlet. Applications Pumping feed water in power stations, boiler feed systems and condensate transport in industrial plants.
Higher ratings possible upon request		
		https://www.ksb.com/en-gb/lc/H00A

HGM-S

YNK

$\begin{array}{lll} Q \; [m^3/h] & \leq 5200 \\ H \; [m] & \leq 540 \\ p \; [bar] & \leq 100 \\ T \; [^{\circ}C] & \leq +250 \\ n \; [rpm] & \leq 3300 \\ \end{array}$	
	https://www.ksb.com/en-gb/lc/Y01A

LUVA

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	< 7000	Hot water recirculation in forced-circulation, forced-flow and combined-circulation boilers for very high pressures and in solar power towers.
		https://www.ksb.com/en-gb/lc/L02A

Pumps

DN 150 - 300 Description Vertical can-type ring-section pump on base frame, multistage, first-stage impeller designed is gard ouble-entry suction impeller, radial impellers. Flanges to DIN or ANSI. P [bar] 540 P [bar] 5500 Data for 50 Hz operation https://www.ktb.com/en-gb//c/W07A SEZ Image: Canaditable for 60 Hz Pacipition H [m] 5500 P [m/h] 56000 P [bar] 56000 P [canaditable for 60 Hz operation Applications No available for 60 Hz operation Applications P [m/h] 56000 Data for 50 Hz operation Applications P [m/h] 56000 Data for 50 Hz operation Applications P [m/h] 56000
H [m] 637 p [bar] double-entry suction impeller, radial impellers. Flanges to DIN or ANSL. P [bar] 640 Applications T [C] 64140 Applications Data for 50 Hz operation Also available for 60 Hz https://www.ksb.com/en-gb//c/W07A SEZ Image: Second Sec
P [bar] 44 F ['C] Applications F mmping condensate in power stations and industrial plants. P (C) 5+140 N (rpm) Mmping condensate in power stations and industrial plants. Data for 50 Hz operation Also available for 60 Hz https://www.ksb.com/en-gb/lc/W07A SEZ Q (m ² /h) \$6500 H (m) Scription Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DN or ANSi standards available. Applications Pumping raw water, pure water, service water and cooling water in industry, water supply suction elbow, pull-out design available. Pumping raw water, pure water, service water and cooling water in industry, water supply suction elbow, pull-out design available. Pumping raw water, pure water, service water and cooling water in industry, water supply suction elbow, pull-out design available. SNW N \$50-800 Q (m ¹ /h) Scription Applications P (bar) Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. N ['Data for 50 Hz operation Applications Applications P (bar) Scription Applications Data for 50 Hz operation Applications Scription and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water. Data for 50 Hz operation Apposable beapon request Higher ratings possible upon reque
Pinding \$ +140 n [rpm] Pumping condensate in power stations and industrial plants. Pinping condensate in power stations and industrial plants. Pinping condensate in power stations and industrial plants. Data for 50 Hz operation Also available for 60 Hz https://www.kdb.com/en-gb/Ic/W07A SEZ Pinping condensate in power stations and industrial plants. Pinping condensate in power stations and industrial plants. Pinping condensate in power stations and industrial plants. SEZ Pinping condensate in power stations and industrial plants. Pinping condensate in power stations and industrial plants. T [rc] upping raw water, pure water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. Applications Pinping raw water, pure water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. SNW plant for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Sectiption Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications plant for 50 Hz operation Abia for 50 Hz operation Abia for 50 Hz operation Abia for 50 Hz operat
I [C] \$ + 140 In [rpm] 1500 Data for 50 Hz operation Also available for 60 Hz H [m] \$ 465000 I [C] \$ 440 I [C] \$ 440 I [C] \$ 440 I [C] \$ 530 Data for 50 Hz operation Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or to elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DIN or ANSI standards available. Applications Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. Higher ratings possible upon request https://www.kbb.com/en-gb/lC/S108 SNW DN 350 - 800 Q [m ² /h] \$ 6500 P [bar] \$ 6100 P [bar] \$ 6100 Data for 50 Hz operation A for 50 Hz operation A for 50 Hz operation Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. P [m] \$ 6500 P [m] \$ 6500 D [bar for 50 Hz operation A for 50 Hz ope
Data for 50 Hz operation Also available for 60 Hz https://www.kds.com/en-gb/IC/W07A SEEZ Q [m³/h] ≤ 65000 H [m] Description V [I'C] 5440 T ['C] Second to preation Also available for 60 Hz Higher ratings possible upon request Description Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description DN 350 - 800 Pate for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description SNW DN 350 - 800 Pate for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description DN 350 - 800 Pate for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Pi [bar] DN 350 - 800 Pate for 50 Hz operation Also available for 50 Hz operati
Data for 50 Hz operation Also available for 60 Hz https://www.ksb.com/en-gb//C/W07A SEEZ
Atso available for 60 Hz https://www.ksb.com/en-gb//c/W07A SEZ V Q [m³/h] ≤ 6500 H [m] T [*C] ≤ 140 n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle of suction elbow, pull-out design available. Applications Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desailnation plants. NUT Source (m³/h) M (m³/h) H (
SEZ Q [m³/h] ≤ 6500 H [m] Description Vertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle of suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DN or ANSI standards available. Applications Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. Implementation SSNW Implementation 350 - 800 Q [m³/h] Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearing, discharge nozzle arranged above- or underfloor. Applications Plan1 S500 DN 350 - 800 Q [m³/h] Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearing, discharge nozzle arranged above- or underfloor. Applications T [*C] Stor 800 DN 350 - 800 Q [m³/h] Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearing, discharge nozzle arranged above- or underfloor. Applications M to available for 60 Hz Higher ratings possible upon request
SEZ Image: Construction of the second seco
Q [m ³ /h] ≤ 65000 Description Wertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DIN or ANS istandards available. Applications Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. SNW DN 350 - 800 Q [m ³ /h] Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Ploat for 50 Hz operation Also available for 60 Hz Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Applications T [°C] ≤ 460 n [rpm] 510 Zeta for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Higher ratings possible upon request
Q [m ³ /h] ≤ 65000 Description Wertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DIN or ANSI standards available. Applications Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. FINU DN 350 - 800 Q [m ³ /h] Secription Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Image: Source of the start or 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Irigications Irigication and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.
Q [m ³ /h] ≤ 65000 Description Wertical tubular casing pump with open mixed flow impeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flat to DIN or ANSI standards available. Applications I [°C] ≤ 440 n [rpm] ≤ 990 Data for 50 Hz operation Aso available for 60 Hz Applications Higher ratings possible upon request https://www.ksb.com/en-gb/lc/S108 SNW DN 350 - 800 Q [m ³ /h] ≤ 6500 Q [m ³ /h] ≤ 6500 Puricial tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Applications Image: plant for 50 Hz operation A plications Irigotion No A for 50 Hz operation A for 50 Hz operation A ba available for 60 Hz H [m] ≤ 6500 P [bar] ≤ 10 T [°C] ≤ 460 N [rpm] ≤ 1500 Data for 50
H [m] < 33
Image: Single
T[°C] \$ +40 n [rpm] \$ 990 Data for 50 Hz operation Asio available for 60 Hz Asio available for 60 Hz Higher ratings possible upon request https://www.ksb.com/en-gb/lc/5108
Image: normal set in the
Applications Nation available for 60 Hz Higher ratings possible upon request Applications Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. Image: Note that the industry of
Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Pumping raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants. Image: transport of transport
Higher ratings possible upon request Potential ponter detroited of extention of the betreated of extention pointed. Image: Street of the betreated of extention of the betreated of the be
DN 350 - 800 Q [m ³ /h] ≤ 6500 H [m] ≤ 6500 p [bar] ≤ 100 T [°C] ≤ 460 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Description
DN 350 - 800 Description Q [m³/h] ≤ 6500 Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. P [bar] ≤ 100 Applications T [°C] ≤ +600 Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water. Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
DN 350 - 800 Description Q [m³/h] ≤ 6500 Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. H [m] ≤ 600 Vertical tubular casing pump with mixed flow impeller, single-stage, with maintenance-free Residur bearings, discharge nozzle arranged above- or underfloor. P [bar] ≤ 100 Applications T [°C] ≤ 460 Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water. Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
Q [m³/h] ≤ 6500 H [m] ≤ 660 p [bar] ≤ 100 T [°C] ≤ +60 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Higher ratings possible upon request
H [m] ≤ 60 p [bar] ≤ 10 T [°C] ≤ +60 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
In [III] ≤ 10 p [bar] ≤ 10 T [°C] ≤ +60 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Higher ratings possible upon request
p [Dar] ≤ 10 T [°C] ≤ +60 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request Higher ratings possible upon request
T [°C] ≤ +60 n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
n [rpm] ≤ 1500 Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
Data for 50 Hz operation Also available for 60 Hz Higher ratings possible upon request
Also available for 60 Hz Higher ratings possible upon request
Higher ratings possible upon request
https://www.ksb.com/en-gb/lc/S14A
PNW .
DN 350 - 800 Description
O [m ³ /h]
Q $[m^3/h]$ ≤ 9000 Vertical tubular casing pump with axial propeller, single-stage, with maintenance-free ResiduH $[m]$ ≤ 10

$p [bar] \leq 10$ $T [°C] < +60$	bearings, discharge nozzle arranged above or below floor level. Applications Irrigation and drainage, stormwater pumping stations, for raw water and pure water, water supply, cooling water.
Data for 50 Hz operation Also available for 60 Hz	
Higher ratings possible upon request	

SPY

 DN
 350 - 1200
 Description

 Q [m³/h]
 ≤ 21600
 Long-coupled volute casing pump, single-stage, in back pull-out design.

 H [m]
 ≤ 50
 Applications

 p [bar]
 ≤ 1105
 Irrigation, drainage and water supply systems, for pumping condensate, cooling water, service

 Data for 50 Hz operation
 Also available for 60 Hz
 Higher ratings possible upon request

 https://www.ksb.com/en-gb/lc/515A
 https://www.ksb.com/en-gb/lc/515A

Pumps for nuclear power stations

RER

Higher ratings possible upon request

RUV

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz	≤ 22000 ≤ 111 ≤ 155 ≤ +350 ≤ 1800	Description Vertical single-stage reactor coolant pump. Seal-less design with integrated wet rotor motor and integrated flywheel. Product-lubricated bearings, no oil supply systems required. Applications Reactor coolant recirculation in generation III+ nuclear power stations.
Higher ratings possible upon req	luest	https://www.ksh.com/en-ah//c/RA2A

PSR

Q [m³/h] ≤ 900 H [m] <4	
	https://www.ksb.com/en-gb/lc/P01A

RHD

Q [m³/h] ≤ H [m] ≤ p [bar] T [°C] ≤	≤ 6500 ≤ 1000 ≤ 150 ≤ +210 ≤ 6500	Description Horizontal single-stage double-entry main feed water pump MFWP, cast or forged variant. Applications Main feed water supply (MFWS) in steam generation systems of nuclear power stations.
		https://www.ksb.com/en-gb/lc/R25A

LUVm

A STATE	DN Q [m³/h] H [m] p [bar] T [°C] Data for 50 Hz operation Also available for 60 Hz	< 7000	Applications
			https://www.ksb.com/en-gb/lc/L25A

RHM

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz Higher ratings possible upon requ	≤ 2100 ≤ 220 ≤ +180 ≤ 8000	Horizontal multistage barrel pull-out pump. Applications Core flooding, emergency cooling and residual heat removal systems, chemical and volume control systems, control rod drive systems, bich-pressure and medium-pressure affects injection
		https://www.ksb.com/en-gb/lc/R26A

RVM

RHR

n [rpm]	≤ 6000 ≤ 190	Description Horizontal circular casing pump with forged or cast pressure boundary and diffuser. Applications Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system, component cooling water systems.
Available for 50 Hz and 60 Hz		
		https://www.ksb.com/en-gb/lc/R27A

RVR

		DN Q [m ³ /h] H [m] o [bar] [°C] n [rpm] Available for 50 Hz and 60 Hz	≤ 6000 ≤ 190	Description Vertical circular casing pump with forged or cast pressure boundary and diffuser. Applications Core flooding, emergency cooling and residual heat removal systems, ancillary systems, acid feed system and low-pressure injection system, component cooling water systems.
--	--	---	-----------------	--

Р		m	۱r	2
Г	u		ւի	12

RVT

Pumps for desalination by reverse osmosis

RPH-RO

Multitec-RO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 850 ≤ 1000 ≤ 100	 Description Horizontal or vertical multistage centrifugal pump in ring-section design. Axial or radial suction nozzle. Discharge nozzle can be turned in steps of 90°. Closed radial impellers. Made of duplex or super duplex stainless steel. Applications High-pressure pump for RO seawater desalination systems and geothermal systems (re-injection of geothermal water into the aquifer).
		Data for 50 Hz operation Also available for 60 Hz	
KSB SuPremE. PumpDriv	e		

Positive displacement pumps

RC / RCV

Fire-fighting systems

FP Electro Diesel Set

FP Diesel Unit / FP Electro Unit

	DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz op Also available for	≤ 2500 ≤ 150 ≤ 25 $\geq +5 - \leq +50$ ≤ 3000 eration	Description Automatic fire-fighting systems consisting of one pump, with electric or diesel motor and control panels. In accordance with EN 12845, CEA 4001, UNE-23500, NFPA-20, etc. Applications Office buildings, hotels, industry, large shopping centres, etc.
--	---	---	---

Control units

Controlmatic E

Controlmatic E.2

Number of pumps V [V]	Description Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump Applications In water supply systems in combination with MultiEco, Ixo, etc.
	https://www.ksb.com/en-gb/lc/C72A

Cervomatic EDP.2

Number of pumps V [V]	≤ 1 1~230 / 3~400	Description Automatic control unit for pressure-controlled starting and either pressure-controlled or flow- controlled stopping and monitoring of a single pump. Applications In water supply systems with pumps of the MultiEco, Ixo, etc. type series with single-phase or three-phase motors
		https://www.ksb.com/en-gb/lc/C19A

LevelControl Basic 2

 	 Description Level control unit for controlling and protecting either one or two pumps. DOL starting up to 4 kW, star-delta starting up to 22 kW. Higher ratings on request. Applications Tank drainage using float switches, digital switches, 420 mA, pneumatic (without compressor) or bubbler system in building services and waste water applications. Tank filling using float switches or 420 mA signals in building services and water supply applications.
	https://www.ksh.com/on.gh/lc/l.20A

UPA Control

Number of pumps P [kW] V [V]	3	Description The KSB switchgear is suitable for level control and protection of submersible borehole pumps, submersible motor pumps and dry-installed pumps with single-phase AC motors 1~ 230 V or three-phase motors 3~ 230 / 400 V / 50 Hz. The motor is started DOL. Enclosure: IP56, dimensions: $205 \times 255 \times 170$ mm (H × W × D). Applications Irrigation and filling or draining tanks in water supply applications in combination with 4-inch and 6-inch pumps.
		https://www.ksb.com/en-gb/lc/U05A

Monitoring and diagnosis

AmaControl

			AmaControl	Spring-loaded	Description
			connections	terminals	Protection module for water and waste water products as all-in-one device. Depending on the
			Mounting	35 mm standard rail	variant, it can be used for motor temperature measurement, bearing temperature measure leakage measurement, vibration measurement, voltage measurement and current measure
5			т [°C]	AmaControl 3 / 4: \geq -30 - \leq +70 AmaControl L: \geq -20 - \leq +60	Applications
			Dimensions H × W × D [mm]	AmaControl 3 / 4: 127,2×45×113,6 AmaControl L:	
				127,2×22,5×113,6	
			V [V]	AC 115-230 ± 10%	
			V [V]	AC/DC 24 ± 10%	
					https://www.ksb.com/en-gb/lc/A75B

Legal information/Copyright

Product Portfolio Pumps I Automation

All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent.

Subject to technical modification without prior notice.

© KSB SE & Co. KGaA, Frankenthal 2022-12-01

KSB SE & Co. KGaA Johann-Klein-Straße 9 • 67227 Frankenthal (Germany) Tel. +49 6233 86-0 www.ksb.com